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CONSTRUCTING PDFS FROM MOMENTS:

LQCD IS IDEAL FOR EVALUATING SUCH MES. 

PHENOMENOLOGICALLY 6-8 MOMENTS APPEAR 
TO BE SUFFICIENT.  

HOWEVER, ONLY UP TO THE FIRST THREE 
MOMENTS HAVE BEEN ACCESSIBLE WITH LQCD 
DUE TO A POWER-DIVERGENCE MIXING WITH 
LOWER DIMENSIONAL OPERATORS.
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FIG. 2: Normalised corrrelation matrix (Cij/
�

CiiCjj) on
timeslice 5 in the T��

1 irrep (743, 163). Operators are ordered
such that those subduced from spin 1 appear first followed by
spin 3 then spin 4.

value of t0 was emphasised in Ref. [5]. In this paper we
will follow the “reconstruction” scheme outlined therein
in the selection of t0. In short, the masses, mn, extracted
from fits to the principal correlators and the Zn

i extracted
from the eigenvectors on a single timeslice are used in
equation 3 to “reconstruct” the correlator matrix. This
reconstructed matrix is compared to the original data
for all t > t0 with the degree of agreement indicating the
acceptability of the spectral description. The description
generally improves as one increases t0 until at some point
the increase in statistical noise prevents further improve-
ment. In particular see figure 6 in Ref. [5] where the
e�ect of choosing t0 too small is clearly seen. Forcing
the dim(C)-state orthogonality, vm† C(t0) vn = �n,m, in
a situation where accurate description of C(t0) requires
more than dim(C) states leads to a poor description of
the correlator matrix at times t > t0. The reconstruction
procedure gives a guide to the minimal t0 for which the
correlator matrix is well described by the variational so-
lution. The sensitivity of extracted spectral quantities to
the value of t0 used will be discussed in detail in section
VIIA, but in short it is usually necessary for us to use
t0 � 7.

The reconfit2 code used for variational analysis is
available within the adat suite [36].

VI. DETERMINING THE SPIN OF A STATE

In principle the most rigourous method to determine
the spin of a state is to perform the extraction of the
spectrum for each lattice irrep at successively finer lat-
tice spacings, and then to extrapolate the energies in
each irrep to the continuum limit. There one expects
to see degeneracies emerge according to the pattern of
subduction, free of splittings arising from the discreti-

FIG. 3: Overlaps, Z, of a selection of operators onto states
labelled by m/m� in each lattice irrep, ��� (743, 163). Z’s
are normalised so that the largest value across all states is
equal to 1. Lighter area at the head of each bar represents
the one sigma statistical uncertainly.

sation e�ects. Thus, for example, a spin-3 state would
appear as degenerate energies within the A2, T1 and T2

irreps. This procedure has been successfully applied to
identify a number of low-lying states in the calculation
of the glueball spectrum within pure SU(3) Yang-Mills
theory[37].
There are two reasons why this technique is not cur-

rently practical for the QCD meson spectrum. Firstly,
the procedure relies on a series of calculations on pro-
gressively finer lattices, and hence at increasing computa-
tional cost. Secondly, the continuum spectrum, classified
according to the continuum quantum numbers, exhibits
a high degree of degeneracy; when classified according
to the symmetries of the cube, the degree of degener-
acy is vastly magnified. Identification of degeneracies
between irreps would require a statistical precision far
beyond even that of the high-quality data presented here,
as seen in Figure 10 and subsequent figures.
To alleviate these di⇤culties it would be useful to have

a spin-identification method that is e�ective when us-
ing data obtained at only a single lattice spacing. Ob-
viously this lattice spacing should be fine enough that
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available within the adat suite [36].

VI. DETERMINING THE SPIN OF A STATE

In principle the most rigourous method to determine
the spin of a state is to perform the extraction of the
spectrum for each lattice irrep at successively finer lat-
tice spacings, and then to extrapolate the energies in
each irrep to the continuum limit. There one expects
to see degeneracies emerge according to the pattern of
subduction, free of splittings arising from the discreti-

FIG. 3: Overlaps, Z, of a selection of operators onto states
labelled by m/m� in each lattice irrep, ��� (743, 163). Z’s
are normalised so that the largest value across all states is
equal to 1. Lighter area at the head of each bar represents
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sation e�ects. Thus, for example, a spin-3 state would
appear as degenerate energies within the A2, T1 and T2

irreps. This procedure has been successfully applied to
identify a number of low-lying states in the calculation
of the glueball spectrum within pure SU(3) Yang-Mills
theory[37].
There are two reasons why this technique is not cur-

rently practical for the QCD meson spectrum. Firstly,
the procedure relies on a series of calculations on pro-
gressively finer lattices, and hence at increasing computa-
tional cost. Secondly, the continuum spectrum, classified
according to the continuum quantum numbers, exhibits
a high degree of degeneracy; when classified according
to the symmetries of the cube, the degree of degener-
acy is vastly magnified. Identification of degeneracies
between irreps would require a statistical precision far
beyond even that of the high-quality data presented here,
as seen in Figure 10 and subsequent figures.
To alleviate these di⇤culties it would be useful to have

a spin-identification method that is e�ective when us-
ing data obtained at only a single lattice spacing. Ob-
viously this lattice spacing should be fine enough that
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FIG. 2. The tree-level values of the coe�cients C(d)
30;L00 appearing in eq. (4) as a function of the

largest n-shell included in the summation in eq. (1).

The numerical values of the coe�cients in eq. (4), at the classical level, as a function
of the maximum shell included in the sum in eq. (2) are shown in fig. 2 and fig. 3. From
these plots it is clear that while the coe�cients C(3)

30;30 and C(5)
30;30 reach a finite value for

large N, the coe�cients of lower and higher angular momentum operators, as well as the
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SEE ANALYTICAL RESULTS IN THE PAPER…
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THE COEFFICIENT OF LOWER-DIMENSIONAL 
OPERATOR:
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THE COEFFICIENT OF HIGHER-DIMENSIONAL 
OPERATOR:
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THE COEFFICIENT OF LORENTZ-BREAKING 
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RECALLING THE EXPANSION OF OUR CHOSEN OPERATOR…
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POWER DIVERGENCE OF THE NAIVE OPERATOR EVIDENT:
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SEE THE PAPER FOR CAREFUL TREATMENT OF THESE FEATURES IN LATTICE 
PERTURBATION THEORY. THE CONCLUSION IS THAT:

DOES THIS WORK NON-PERTURBATIVELY?

SCALING OF NON-ROTATIONAL-INVARIANT CONTRIBUTIONS AT 1-
LOOP LPT WITH WILSON FERMIONS:
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EVEN A SMALL SHELL LARGELY ELIMINATES THE 
CONTAMINATION:

A TREE LEVEL EXPECTATION

IN PRACTICE, HOW LARGE CAN THE 
OPERATOR BE?

ZD and Savage, PRD 86, 054505 (2012).



GENERATING GAUGE CONFIGURATIONS WITH 
A MULTI SCALE ALGORITHM METHOD

A TREE LEVEL EXPECTATION

ZD and Savage, PRD 86, 054505 (2012).
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114502 (2016), and arXiv:1801.06132 
[hep-lat].
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FIG. 3: A schematic representation of the 3-point correlation function of the pion with an insertion
of the operator in Eq. (3). Curved lines represent u or d propagators, with those with the same
color being essentially the same. The blue circle represents the extended operator, and the dashed
line connecting the points within the operator is a representative of the product of the links along
the Bresenham path.

measuring plaquettes and Wilson loops on much shorter timescales than the measurements
specific to this proposal and the spacing between measurements will be adjusted accordingly.
Ensembles E8, E4 and E2 will be independent, with E4 generated from a separate stream
with the same coarse parameters as for E8, and E2 generated from a two-stage refinement
from a third coarse stream. Similarly, E3 and E6 will be independent. While the ensemble

E2 dominates the cost, it is essential for the controlled study of the suppression of power

divergences. Equally importantly, ensemble E2 will allow us to access considerably higher

Mellin moments than are possible with the other ensembles alone.

B. Propagator calculations

As this is an exploratory calculation aimed at testing operator construction, we will
perform the calculation of the twist-2 matrix elements in the pion rather than the more phe-
nomenologically important proton. We will also work at light quark masses corresponding
to a pion mass of m

⇡

⇠ 600 MeV. This simplifies the contraction task and will also provide
a low statistical-noise environment in which to test aspects of the operator construction.

The calculation of the PDF moments requires evaluating the following correlation function
in the lattice calculation

C3p(tf , t) =
X

xf ,x

h0|�
⇡

(x
f

, t

f

)✓̂
n,l,m

(x, t;µ)�†
⇡

(0, 0)|0i (4)

which is schematically shown in Fig. 3. �
⇡

is the interpolator for the pion field, and operator
✓̂

n,l,m

is defined in Eq. (3) with the quark and antiquark fields being either the u or d quarks.
It is clear that evaluating this correlation function requires only a forward quark propagator
and a sequential quark propagator through the pion sink. At the same cost, moments of the
pion distribution amplitude will also be calculated and preliminary tests of other methods
of accessing PDFs (such as those of Refs. [3, 11]) will also be possible.

Since these calculations will be performed at relatively heavy quark masses, propagators
will be computed using the BiCGstab inverter (either in chroma or qlua) with tolerance
10�14. We have performed initial studies that enabled us to estimate the cost of the propa-
gator calculations as shown in Table II. On each configuration, we will perform Nsrc sets of
measurements from well-separated space-time locations. We will use the same quark mass
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FIG. 1: Diagrammatic representation of a two-dimensional counterpart of the composite operator
in Eq. (3). Only a single contribution to the operator, i.e., the term  (x)U

x,x+na

 (x + na), is
shown, and the full operator is constructed by summing over all such contributions when the field
 is placed on every grid point within and on the blue circle with radius Na ⌘ 1

µ

.

multiscale algorithm developed recently by some of us [28], e�ciently producing thermalized
ensembles of (quenched) gauge-field configurations whose topology is well sampled. With six
fine lattice spacings in the range 0.02 fm . a . 0.08 fm, and by performing the evaluation
of the matrix elements of the improved operator at multiple di↵erent operator scales in the
range 2 GeV . µ . 5 GeV, we will be able to fully investigate the lattice-spacing scaling
of the matrix elements as well as the dependence on the scale of the operator, and make
conclusive statements about the prospect of using such operators in future hadron-structure
calculations.

II. METHODOLOGY AND EXPECTATIONS

Generalizing the proposal of Ref. [1] to four spacetime dimensions and specializing to the
case of the simplest bilinear fermionic operators of the continuum, we consider the following
gauge-invariant operator
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nµ

 (x
µ

)U (C)
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 (x
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+ n

µ

a)Y
n,l,m

(n̂
µ

) , (3)

on the lattice, ignoring potential Dirac matrix structures (nontrivial Dirac structures will be
considered in our numerical calculations).  and  represent the quark and antiquark fields,
a denotes the lattice spacing, N is the maximum displacement of the quark and antiquark
field allowed in the sum in units of lattice spacing. This defines the operator’s intrinsic scale,
which one may take to be the renormalization scale µ, i.e., µ = 1

Na

. n
µ

is a four-vector with
integer components. Y

n,l,m

are hyperspherical harmonics, closely related to Gegenbauer
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of the matrix elements as well as the dependence on the scale of the operator, and make
conclusive statements about the prospect of using such operators in future hadron-structure
calculations.

II. METHODOLOGY AND EXPECTATIONS

Generalizing the proposal of Ref. [1] to four spacetime dimensions and specializing to the
case of the simplest bilinear fermionic operators of the continuum, we consider the following
gauge-invariant operator

✓̂

n,l,m

(x
µ

;µ) =
2

⇡

2
N

4

|nµ|NX

nµ

 (x
µ

)U (C)
xµ,xµ+nµa

 (x
µ

+ n

µ

a)Y
n,l,m

(n̂
µ

) , (3)

on the lattice, ignoring potential Dirac matrix structures (nontrivial Dirac structures will be
considered in our numerical calculations).  and  represent the quark and antiquark fields,
a denotes the lattice spacing, N is the maximum displacement of the quark and antiquark
field allowed in the sum in units of lattice spacing. This defines the operator’s intrinsic scale,
which one may take to be the renormalization scale µ, i.e., µ = 1

Na

. n
µ

is a four-vector with
integer components. Y

n,l,m

are hyperspherical harmonics, closely related to Gegenbauer

8

FIG. 3: A schematic representation of the 3-point correlation function of the pion with an insertion
of the operator in Eq. (3). Curved lines represent u or d propagators, with those with the same
color being essentially the same. The blue circle represents the extended operator, and the dashed
line connecting the points within the operator is a representative of the product of the links along
the Bresenham path.

measuring plaquettes and Wilson loops on much shorter timescales than the measurements
specific to this proposal and the spacing between measurements will be adjusted accordingly.
Ensembles E8, E4 and E2 will be independent, with E4 generated from a separate stream
with the same coarse parameters as for E8, and E2 generated from a two-stage refinement
from a third coarse stream. Similarly, E3 and E6 will be independent. While the ensemble

E2 dominates the cost, it is essential for the controlled study of the suppression of power

divergences. Equally importantly, ensemble E2 will allow us to access considerably higher

Mellin moments than are possible with the other ensembles alone.

B. Propagator calculations

As this is an exploratory calculation aimed at testing operator construction, we will
perform the calculation of the twist-2 matrix elements in the pion rather than the more phe-
nomenologically important proton. We will also work at light quark masses corresponding
to a pion mass of m

⇡

⇠ 600 MeV. This simplifies the contraction task and will also provide
a low statistical-noise environment in which to test aspects of the operator construction.

The calculation of the PDF moments requires evaluating the following correlation function
in the lattice calculation

C3p(tf , t) =
X

xf ,x

h0|�
⇡

(x
f

, t

f

)✓̂
n,l,m

(x, t;µ)�†
⇡

(0, 0)|0i (4)

which is schematically shown in Fig. 3. �
⇡

is the interpolator for the pion field, and operator
✓̂

n,l,m

is defined in Eq. (3) with the quark and antiquark fields being either the u or d quarks.
It is clear that evaluating this correlation function requires only a forward quark propagator
and a sequential quark propagator through the pion sink. At the same cost, moments of the
pion distribution amplitude will also be calculated and preliminary tests of other methods
of accessing PDFs (such as those of Refs. [3, 11]) will also be possible.

Since these calculations will be performed at relatively heavy quark masses, propagators
will be computed using the BiCGstab inverter (either in chroma or qlua) with tolerance
10�14. We have performed initial studies that enabled us to estimate the cost of the propa-
gator calculations as shown in Table II. On each configuration, we will perform Nsrc sets of
measurements from well-separated space-time locations. We will use the same quark mass
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• THE PROPOSED OPERATOR ON THE LATTICE APPROACHES THE CONTINUUM 
OPERATOR IN A SMOOTH WAY WITH CORRECTIONS THAT SCALE AT MOST BY      . 
TADPOLE IMPROVEMENT AND GAUGE-FIELD SMEARING ARE ESSENTIAL FOR 
RECOVERING ROTATIONAL INVARIANCE IN LATTICE GAUGE THEORIES.

a2

• NO POWER DIVERGENCE! THE SPECTRUM OF EXCITED STATES AND HIGHER 
MOMENTS OF HADRON DISTRIBUTION FUNCTIONS ARE CALCULABLE FROM 
LATTICE QCD.

IN SUMMARY
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OUTLOOK

• CAN THE OPERATOR BE FURTHER IMPROVED TOWARDS THE CONTINUUM LIMIT? 

• RENORMALIZTION OF THE OPERATOR AND MATCHING. 

• ARE OTHER SMEARING PROFILES POTENTIALLY MORE USEFUL? 

• COMPARISON WITH OTHER METHODS AND PROPOSALS, e.g., DETMOLD AND LIN, 
JI, MONAHAN AND ORGINOS.
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AN EXAMPLE OF OPERATOR BASIS: L=1, m=0

LORENTZ-VIOLATING OPERATOR


