## Development of a GaN HEMT SSPA in the L-BAND at ALBA ALBA Z. Hazami<sup>1,2</sup>, P. Solans<sup>1</sup>, F. Perez<sup>1</sup>, A. Salom<sup>1</sup>, B. Bravo<sup>1</sup>, J. Ocampo<sup>1</sup>, Y. Kubyshin<sup>2</sup>

Z. Hazami<sup>1,2</sup>, P. Solans<sup>1</sup>, F. Perez<sup>1</sup>, A. Salom<sup>1</sup>, B. Bravo<sup>1</sup>, J. Ocampo<sup>1</sup>, Y. Kubyshin<sup>2</sup>
 1. ALBA - CELLS , Cerdanyola, Barcelona (Spain)
 2. Polytechnic University of Catalonia (UPC) - Institute of Energy Technologies (INTE)

## Abstract

ALBA is a 3GeV synchrotron light source located in Barcelona and operating with users since May 2012. The RF systems are based in IOT transmitters and a total of thirteen 80kW IOT amplifiers are used to power the Storage Ring and Booster cavities at 500MHz. A modular Solid State Power Amplifier (SSPA) has been proposed for an already designed active 3<sup>rd</sup> Harmonic RF system of the ALBA Storage Ring. This SSPA is aimed to provide up to 20kW power per cavity in a Continuous Wave (CW) mode at 1.5GHz nominal frequency. Accordingly, a 250W power amplifier module, as the primary unit, has been designed and tested. This SSPA system will be composed of modules of 1kW, combining four primary units. For these modules, a parallel combination array using a 4-way power divider/combiner of microstrip type has been designed and tested.

The measurement results showed a good agreement with the simulations. In this poster the design of the primary unit and combination array as well as their test results will be presented.

## **250W Power Amplifier Module**

In this project three SSPA module have been designed. The transistor is of GaN from Cree(Wolfspeed) -CGHV14250- with 250W average power and more than 60% efficiency. The 1<sup>st</sup> SSPA, where capacitors had been used in the matching networks was unstable from (80-110 MHz) which obliged us to the 2<sup>nd</sup> SSPA. Due to thermal issues of the output matching capacitors while testing, the 3<sup>rd</sup> SSPA was designed with stubs to substitute the capacitors. The primitive measurement results for output power, gain and efficiency of these three designees are as in the table below.

| CW measurement results of designed High Power Amplifiers<br>@ 1.5GHz |                          |                     |              |                   |
|----------------------------------------------------------------------|--------------------------|---------------------|--------------|-------------------|
| Designed<br>SSPA                                                     | Matching network<br>type | output power<br>(W) | Gain<br>(dB) | Efficiency<br>(%) |
| <b>1</b> st                                                          | capacitor                | unstable            |              |                   |
| 2 <sup>nd</sup>                                                      | capacitor                | 136                 | 14.2         | 47.7              |
| 3 <sup>rd</sup>                                                      | stub                     | 151 14.4            |              | 67                |



In the following graphs 2<sup>nd</sup> and 3<sup>rd</sup> SSPA before tuning, with 3<sup>rd</sup> SSPA after tuning have been compered.







2<sup>nd</sup> SSPA

3<sup>rd</sup> SSPA

After some modifications in the 3<sup>rd</sup> SSPA, in terms of matching networks stub length, the overall specifications has been improved which is still ongoing.

| Designed                | Matching network | output power | Gain | Efficiency |
|-------------------------|------------------|--------------|------|------------|
| SSPA                    | type             | (W)          | (dB) | (%)        |
| 3 <sup>rd</sup> - tuned | stub             | 181          | 15.5 | 67         |



## **Power divider/combiner**

For a **1kW** Power Amplifier module at 1.5GHz, a 1:4 Wilkinson power combiner should be utilized to merge the output power of **4 SSPA modules** in a **parallel** array. This power divider in a revers direction, has a functionality as a 4:1 power divider.

| characteristics                                                       |      |            |   |
|-----------------------------------------------------------------------|------|------------|---|
| ✓ Dimension: 100 × 284 sq.mm                                          | PORT | Freq (GHz) | I |
| <ul> <li>✓ Substrate: RT6035HTC</li> <li>✓ Thickness: 18um</li> </ul> | 2    | 1.5        |   |
| ✓ Height: 1.6mm                                                       | 3    | 1.5        |   |

| Т | Freq (GHz) | Insertion loss Amplitude (IL) dB |             | Insertion loss (IL)<br>Phase |             |  |
|---|------------|----------------------------------|-------------|------------------------------|-------------|--|
|   |            | Simulation                       | Measurement | Simulation                   | Measurement |  |
|   | 1.5        | -6.090                           | -6.374      | 166.148                      | -120.675    |  |
|   | 1.5        | -6.136                           | -6.324      | 166.398                      | -119.283    |  |
|   | 1.5        | -6.152                           | -6.329      | 165.027                      | -119.648    |  |
|   | 1.5        | -6.106                           | -6.260      | 164.730                      | -118.496    |  |

| PORT | Freq (GHz) | Return loss (RL) - Measurement |         |  |
|------|------------|--------------------------------|---------|--|
|      |            | Amp (dB)                       | phase   |  |
| 1*-2 | 1.5        | -23.183                        | 137.147 |  |
| 1*-3 | 1.5        | -23.130                        | 136.658 |  |
| 1*-4 | 1.5        | -23.423                        | 139.067 |  |
| 1*-5 | 1.5        | -23.667                        | 139.484 |  |

