DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Overview of the high-power CW RF systems of the WEST tokamak and new developments

CWRF2018, 26/06/2018

Presented by: Walid Helou

W. Helou, L. Delpech, P. Mollard, F. Záček, R. Abdeddaim, J. Achard, J. Adamek, A. Armitano, G. Berger-By, J.-M. Bernard,
P. Bienvenu, O. Bogár, N. Charabot, L. Colas, J.-M. Delaplanche, P. Dumortier, F. Durodié, A. Ekedahl, F. Ferlay,
M. Goniche, J. Havlicek, J. Hillairet, K. Hoffmann, V. Kabourek,
G. Lombard, D. Milanesio, J. Preinhaelter, M. Prou, P. Sabouroux, D. Sesták, G. Tayeb, R. Volpe, K. Vulliez, Q. Yang,
J. Zajac

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

Institut de Recherche sur la Fusion par confinement Magnétique (IRFM)

- Institute at the Fundamental Research Division of the French Alternative Energies and Atomic Energy Commission (CEA).
- Localized at CEA-Cadarache site (close to Marseille, south of France).
- IRFM Staff: ~250 (~10% CEA-Cadarache staff), ~220 permanent, ~30 PhD postdocs and trainees.
- Works on physics & technology for nuclear fusion by magnetic confinement.
- Main experimental device: WEST tokamak.
- Also works for the International Thermonuclear Experimental Reactor (ITER) & other fusion devices worldwide (Europe, China, Korea, Japan, USA, India).

Objective: nuclear fusion power plant.

```
D + T \rightarrow \alpha (3.5 \text{ MeV}) + n (\underbrace{14.1 \text{ MeV}}_{\text{Electricity}})
```

Nuclear fusion reactor very attractive:

- No long-term nuclear waste.
- Runaway reactions are impossible.
- **—** Reduced CO_2 emissions.
- T bred from Li in-situ.
- D and Li largely abundant.

However: need to overcome Coulomb forces, this requires $\sim 10-20$ keV ($\equiv \sim 150 \times 10^6$ °C).

Plasma heating & confinement and tokamaks

However:

- Plasma resistivity \searrow with the temperature \rightarrow I_p insufficient to reach ~10-20 keV.
- Inductive I_p has finite duration

 \rightarrow Tokamak is intrinsically pulsed device.

Steady-state tokamak reactor requires auxiliary heating & current-drive (CD) systems (electromagnetic + other such as Neutral Beam Injectors).

MW-range electromagnetic heating and current-drive systems in nuclear fusion

General configuration:

 $Z_{in,antenna} \neq Z_0 \rightarrow Power reflection.$

- Tore Supra (1st plasma in 1988): a pioneer in long pulse operation.
 - **—** Superconducting toroidal coils.
 - Pressurized water loops.

- Actively cooled plasma facing units.15 MW of CWRF power.
- World record of injected/extracted energy in a tokamak (6 min, 1GJ in 2003).
- Reached coupled RF power:

ICRF	~10 MW / 1.5s / 3 antennas, ~4 MW / 1s / 1 antenna.
LHRF	3.8MW / 5s / 1 antenna, 2.7MW / 78s / 1 antenna.
ICRF+LHRF	6.2 MW / 150 s.

Tore Supra upgraded to WEST (1st plasma in December 2016).

DE LA RECHERCHE À L'INDUSTRI

WEST tokamak

Torus major radius	2.5 m
Torus minor radius	0.5 m
Toroidal field	3.7 T @ R=2.5m
Plasma current	Up to 1 MA
ICRF power	Up to 9 MW
LHRF power	Up to 7 MW
Pulse duration	Up to 1000s

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

- Magneto-plasma: gyrotropic dielectric.
- Birefringence: Slow-Wave. Fast-Wave.

Stix tensor: $\mathbf{K} = \begin{bmatrix} S & jD & 0 \\ -jD & S & 0 \\ 0 & 0 & P \end{bmatrix}$

- Excite proper plasma-wave \rightarrow Proper antenna polarization.
- Generally required: $|N_z| > 1 \rightarrow$ Particular phased-arrays, typically interspaces $\sim \lambda_0/10$.

■ High vacuum (<10⁻⁵ Pa) & high temperature (~200°C) environment.

- Eddy currents \rightarrow Large forces & torques (~500 N.m in ms-time scale, ex: plasma transients).
- Large heat fluxes (~MW/m²).
- Nuclear-safety constraints & compatibility with remote handling (ex. on ITER).
- Need to excite proper plasma-waves. Need for proper phased-arrays with proper polarization.
- Need to optimize edge electron density profile (ex. n_e ≯ by gas-puffing), optimize plasma shape, etc. in order to V / I / |Γ| , and optimize power coupling.

Very non-stationary plasma \rightarrow Harsh non-stationary RF loading. Real-time controlled &/or intrinsically immune (*aka* load-resilient) impedance matching required.

High/CW RF currents (~kA / ~1000s). Thermomechanical considerations & active cooling.

■ High electric fields (~MV/m). Need for arc detection systems (VSWR-based, optical, acoustic, ratio between RF signals, RADAR-based, S-matrix based *aka* SMAD, SHAD, etc.).

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

- Features:
- Per antenna: 3MW/30s or 1MW/1000s, 2 power inputs.
- **—** 48-60 MHz.
- Load-resilience with VSWR < 2:1.
- Symmetric spectrum & $|N_{z,M}| \sim 10$.
- Water actively cooled (70°C/30 bar).
- Vacuum compatible (10⁻⁵ Pa, ~150°C).
- RF measurements (amplitude & phase): Voltage probes at straps inputs (vacuum compatible).
- Directional couplers (P_i, P_r) at antennas inputs.

WEST ICRF antennas & their load-resilience

High power CW ICRF generators

■ 3 modules (1 module / antenna), 1 module = 2 generators (1 generator / ½ antenna).

Each generator:

Solid state amplifier (200W).

3-stage tetrodes.

Control system with ~10 µs time-scale:

 FPGA calculations.
 Inputs: dissipated power, grid & anode currents, P_i & P_r, arc detection, etc.
 Outputs: power trips, regulation & limitation (ex. power is reduced if P_r>200kW).

TITAN:ICRFantennapre-qualificationtestbed @ IRFM

TITAN vacuum chamber:

 Vacuum leak tests (10⁻⁵ Pa, ~150°C).
 High CW RF voltages/currents tests (~30kV/915A peak @ straps inputs).

Low-power dummy load (~mW, tests using VNA) :

Radially moveable (0-10cm) aquarium, hosting high $|\epsilon_r|$ media (BaTiO₃ mixtures, optimized salty water).

Validate RF design.
Check frequency range.
Fill look-up tables with ATU
Assess load-resilience (sweep antenna/load distance).

Antenna validation before installation in the tokamak & accelerate commissioning on plasma

Arc detection in the ICRF system Detection within $\sim 30 \ \mu s$. Power tripping during $\sim 30 \ ms$ before reapplication. Arc detection systems: Complementary Undetected detection arc $-V_r/V_i$ at antenna & generators (VSWR _{threshold}~4). arcs systems are But do not protect the full system required. (ex. low-Z regions). Optical arc detection @ low-Z regions. 60 Normalized power| (dB) 30 50 After filtering Sub-Harmonic Arc Detection (SHAD): 40 (5-35 MHz) 30 20 Under development: FPGA-based + 10 -30<u></u> SHAD for discrimination between arcs 25 50 70 100 125 150 and spurious noise. Time (µs) 60 50 10 Frequency (MHz)

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

Two similar high power CW LHRF antennas

Features:

- **—** 3.7 GHz. 3-4MW / 1000s.
- ~300 reduced-height waveguides (~70x8 mm²).
- Directional spectrum & $|N_{z,M}|$ ~2.
- Water actively cooled (150 °C / 30 bars).
- Vacuum compatible (10⁻⁵ Pa, ~150°C).

Typical components of a WEST LHRF antenna

Bigh power CW LHRF generators

16 klystrons (8 per antenna).

Specs for a klystron:

Frequency	3.7 GHz ± 5 MHz	
Power / 1000s	700 kW (VSWR<1.1:1) 600 kW (VSWR<1.4:1)	
Efficiency	38-44%	
Gain min	50 dB (5 cavities)	

Each klystron features a dual-output followed by BeO RF windows and a power combiner.

Example of interlocks in the LHRF system

Power tripped (~10µs) and switched-off, if:

Vacuum in klystron > threshold.

I_{beam} > threshold.

- P_r @ klystron > 7 kW.

Arc (optical detection) @ klystrons RF windows. Maximum allowed trips: 1.

Power tripped (~10µs) and reapplied (after ~10ms), if:

Arcs (optical detection) @ antennas RF windows or splitters dummy loads. Maximum allowed trips: 7.

- P_r/P_i @ antenna > 0.2. Maximum allowed trips: 100.

Power reduced, if:

- Copper level increases in the tokamak.
- Antennas front-face temperature > threshold (infrared camera security).

Arc detection @ RF windows is essential

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

LHRF slotted waveguide antenna array:

Off-port extension.
 Wave-coupling from limited-access regions.

<u>mW prototype tested @</u> <u>COMPASS tokamak</u>

3D printed (metal) waveguide feeder

LHRF metamaterial low-power loads:

Pre-qualification of LHRF antennas

Particularities of the high power CWRF systems in nuclear fusion

WEST ICRF system

WEST LHRF system

IRFM new developments at LHRF

Summary & potential common interest with particle-accelerator community

Very particular high power CW RF systems in nuclear fusion:

- High vacuum / temperature environment.
- Large heat and electromechanical loads.
- Very particular phased-arrays.
- Challenge of antenna-plasma coupling.

- Harsh non-stationary RF loading.
- High RF voltages/currents.
- Arc detection aspects.

Potential common interest with particle-accelerator community, ex:

- Commissioning procedures & pre-qualification tests.
- Impedance-matching problematics.
- **—** RF arc modeling, detection & discrimination from noise source.

Thank you for your attention

Your collaboration is welcome

Commissariat à l'énergie atomique et aux énergies alternativesDRFCentre de Cadarache | 13108 Saint Paul Lez Durance CedexIRFMT. +33 (0)4 42 25 46 59 | F. +33 (0)4 42 25 64 21SI2P

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Wave-particle interactions and plasma-waves (plane-wave formalism)

	Heating at ICRF (~ 50 MHz)	Current-Drive at LHRF (~ 5 GHz)
Wave-particle resonance	Ion cyclotron resonance: $\omega - N\omega_{c,i} - \underbrace{k_z v_{z,i}}_{\ll \omega} = 0$	Landau resonance: $\omega - \underbrace{\frac{N\omega_{c,e}}{N=0}}_{N=0} - k_z v_{z,e} = 0 \rightarrow \frac{\omega}{k_z} = v_{z,e}$
Plasma-wave	Fast Wave (FW)	Slow Wave (SW)
Frequency (f ₀)	• $\omega = N\omega_{c,i}$ at required resonance layer ($\omega_{c,i} \propto B_{static}$). • $n_{e,co} \searrow$ when $f_0 \nearrow$	• $n_{e,co}$ depends only on f_0 : $n_{e,co} \searrow$ when $f_0 \searrow$
Polarization	E // y-axis \rightarrow FW: suitable for IC resonance.	E // z-axis \rightarrow SW: suitable for Landau resonance.
Spectrum	• Typically, symmetric spectrum. • $ k_{zM} \sim 5-15 \text{ m}^{-1}$. • $n_{e,co} \nearrow$ when $ k_z \nearrow$.	 Asymmetric spectrum. N_{zM} >1 (absorption & propagation). Typically: N_{zM} ~2.
Typical n _{e,co} & L _{ev}	 n_{e,co}~10¹⁸-10¹⁹ m⁻³ (D_{co}~5-15 cm) L_{ev} ~10 cm. 	 At 5GHz: n_{e,co}=3.1x10¹⁷ m⁻³. L_{ev} ~ 5 mm.

- Edge density profile hardly controllable → Same for R.
- Transitions of plasma confinement modes & plasma edge instabilities impact much edge density profile & R.

Block diagram of a WEST ICRF launcher as used for 62 **SIDON** calculations

Simulations of operation scenarios for WEST ICRF launchers using SIDON

