

The ALS RF systems, upgrades and ALS-U plans

M. Betz^{*}, K. Baptiste, Q. Du, M. Vinco, S. Virostek

06/27/2018, CWRF2018, Hsinchu, Taiwan

* mbetz@lbl.gov

• RF systems in the Advanced Light Source (ALS)

• 2017 - 2018 work on the ALS storage ring RF

• Plans for the ALS-U RF

hot deck @ -120 kV

- Heater PS
- Bias PS
- 25 W RF drive amp. (ENI 325)
- Several optical links for control, monitor and RF

ALS-RF E-Gun & Linac

ALS-RF 125 MHz & 500 MHz buncher RF

125MHz: 5 x Eimac CV-2222

• P_{out} ~24 kW for ~30 us

500MHz: 5 x Eimac CV-2404

• P_{out} ~18 kW for ~30 us

2018 Maintenance

- All 10 tubes replaced in 2018
- Sockets cleaned of dust
- All amplifier cavities re-aligned
- 50 % increase in gain & output power

Eimac 3CPX800A7 Lifetime 10-12 years

2 x Thales TV-2002 Klystrons

- 24 MW, 2us, 1 Hz, 50 W avg.
- In service: 1989

Klystron lifetimes [years]

linac 1:		17,	10,	2+
linac 2:	9,	14,	2,	4+

Klystron Failures

- Internal parasitic emission
- Internal arcing
- Low / drifting output power
- 2013: collector water leak, fouled oil, shorted `buck coil` focusing magnet

Modulator Failures

- Thyratron CX-1666
- HV Caps
- HVPS & Cable

Replacement of PFN type modulator by a solid state type funded for FY18/19

2018 frequent (every few days) modulator trips

suspected arcing in the klystron

oil shows signs of **degradation**, oil processing equipment on order

... might need to replace the tube soon

Normal HV / RF pulsing

Pulses with suspected arcing

ALS-RF 500 MHz booster RF

Commercial IOT Based Broadcast TV Transmitter

Nominal operating parameters

- V_k = 32 kV I_k = 2.8 A
- Eff = 60 %
- Gain = 23 dB
- $P_{out} = 54 \text{ kW}$

IOT lifetimes

#1: 3 yrs failed due to poisoned cathode from HV cable fault

#2: 9+ yrs

Failures

- Grid Bias PS
- HV Cable fault (due to RF standing wave)
- **HV** Isolation Transformer
- Thyratron
- 2018: resistor went open circuit in analog LLRF system

ALS-RF Storage ring RF

Klystron Operating Parameters

 $V_k = -53.1 \text{ kV}$ $I_k = 9.55 \text{ A}$ $V_a = 32.8 \text{ kV}$ $I_a = 1.6 \text{ mA}$ Eff = 51.53%Gain = 41.41 dB $\mu P = 1.61$ RF Output = 261.7 kW

RF system

- Operational since 2012
- Nominal RF output power ~260 kW with a single klystron (500 mA, nominal ID gap)
- In 2019: ~360 kW max. with 2 klystrons

Issues

- HV filter capacitor degradation
- Arc detectors not reliable (due to ionizing radiation!)
- Mod anode control system ...

ALS-RF Storage ring RF

ALS-RF Storage ring RF

Wg. Switch Matrix

• Provides operational redundancy

Operating modes

- Kly. 1 or 2 single drive (shown)
- Dual drive
- Dummy load drive
- Cavity to test port for VNA meas.

Current state

- Wg. switches locked in place as shown
- 2019: finish work on control / interlock system for full 2 klystron operation

Percentage of Scheduled Beam Time Lost to SRRF & Non-Latching Faults by Fiscal Year

Goal for SRRF system based on 5000 hours of User Beam time: 0.3% or less

SRRF Reliability - Mean time between faults

SRRF Faults, MTBF (in hours): Mean time between faults, FY2004 - FY2018*

Goal for SRRF system based on 5000 hours of User Beam time: 500 hrs or greater

SRRF Reliability - Mean time to recovery

SRRF Faults, MTTR (in minutes): Mean time to recovery, FY2004 - FY2018*

Goal for SRRF system based on 5000 hours of User Beam time: 90 min or less

Hardware

- Xilinx **KC705** eval. board (Kintex 7) + ADC & DAC daughter boards by 4DSP
- Custom made 500 MHz up / down converter board

Features

- Scalable, distributed design,
 ≤ 42 input / output channels with ≤ 60 MHz bandwidth
- 1.45 µs interlock latency
- Non IQ sampling
- Managed through gigabit ethernet interface
- Epics integration / python expert GUI
- Open Source! Code available on github

In progress

- Narrow-band network analyzer feature
- System-on-a-chip for initialization & housekeeping
- Timing system integration (Micro-research Finland)
- SRRF loop optimization (avoid `fighting` with ALS longitudinal feedback)

SR-RF upgrades Phase noise hunting

ALS-U Plans Overview

- > 100 fold increase in soft x-ray brightness
- Requires **new lattice** in the storage ring, diffraction limited emittance
- Unique: on axis swap out injection to satisfy the smaller dynamic apertures of the new lattice
- New **accumulator** ring for topping-up the swapped-out bunch train

Storage ring

Beam profile

ALS-U Plans Cavities

Storage ring

There is a real chance of reusing the existing 500 MHz ALS RF system + cavity

- **But** optimum coupling factor ~10, existing coupler only achieves < 3.2
- **Option 1** live with reflected RF power (and larger electricity bill)
- Option 2 develop a new RF coupler
- Simulation work in progress

Accumulator

- Severe space constraints
 - \rightarrow will need to modify the concrete shielding
- Exploring existing cavity options
 - ALS SRRF cavity
 - Research Instruments EC "Dampy" cavity
 - Toshiba ASP cavity
- RF Performance & Cooling: RI & Toshiba have no big differences
- Fit: Toshiba cavity would be a leading candidate if coupler coaxial section is extendable. NDA?

ALS-U Plans Accumulator RF

• 2 amplifiers (one for each cavity)

- optional: 3rd amplifier to improve reliability (might not be needed with SSAs)
- simplified switch matrix

Major specs.

CW output power [kW]	60 - 80
Frequency [MHz]	499.6
1 dB bandwidth [MHz]	> 4

Additionally, we would like

- High Reliability / Fault Tolerance: continue to operate with N failed transistors, amp. modules or power supplies (PS)
- Maintenance: modular design, dripless quick disconnects, hot-swappable DC PS
- Fail-Safe Controls & Interlocks

 \rightarrow can be met by commercial SSA's

Example: VHF solid state amplifier for the LCLS-II Gun B collaboration

See poster by K. Baptiste on Thursday

Booster IGBT magic-smoke was released

Booster Bend Magnets

- 1 cycle per second
- 1.2 MJ capacitor bank for energy storage between cycles

Power converter

- based on Semikron IGBT bridge modules
- rated 1.7 kV, 2.4 kA, switches @ 2 kHz

11. April 2018

- upper half-bridge switch failed closed during its conduction period, root cause not clear
- short across the DC bus in the next half-cycle
- IGBT module went through rapid unscheduled disassembly
- 12 x 100 A fuses blew in the cap. bank and prevented worse
- replacing IGBT module and a DC bus filtering cap. allowed us to start back up

Booster IGBT magic-smoke was released

- The injector and its RF systems will still be needed for a long time. Legacy systems are being replaced step by step. (S-Band PFN modulators, analog LLRF, etc.)
- Storage ring RF system upgrade very close to completion (Outstanding: Arc detector issues, control and interlock integration for second klystron)
- There's a good chance we will need a new solid state amplifier + cavity for the ALS-U accumulator ring soon

Thank you!

		WR1800 waveguide	Coax to wg. trans.
Center Frequency	499.64 MHz	Cylindrical ceramic window	
Harmonic #	125	Iris flange waveguide	5.
Peak acc. voltage (@ 66 kW)	813 kV	HOM PORT	- Int - Bride M
Beam current (multibunch)	4 mA		
Synch. rad. loss (dipoles)	5 kW		
Shunt imp. (ZT ²)	5 ΜΩ	TUNER Beam port	HOM port
RF power required beam loading + cavity loss + return loss + transmission loss	54 kW		
RF power installed	80 kW		
		Iris Flange Profile β: 0 to 3.2	Piston tuner