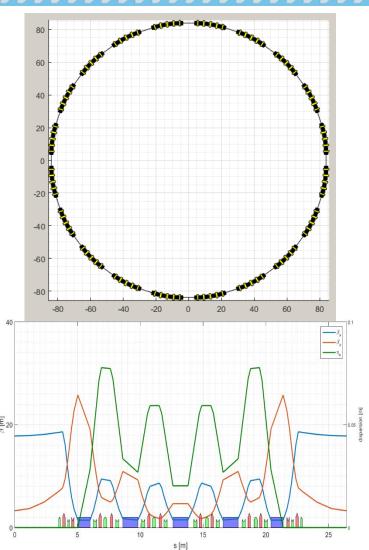
RF Development Status at Iranian Light Source Facility

Khorshid Sarhadi (on behalf of RF Group)

June. 2018

- Introduction to ILSF
- Injection
 - RF gun development
- Storage ring RF system (design, R&D status)
 - Specification
 - Cavity (main & HHC)
 - High power amplifier
 - LLRF

2010 Feasibility study project approved by the government Executive Committee organized Steering Committee formed (Synchrotron accelerator selected)


- 2011 Preliminary conceptual design completed Site selection
- **2013** Conceptual Design Report (CDR) completed
- **2014** Design upgraded to lower emittance ring
- **2015** MAC meeting held to approve & freeze the design
- **2016** Basic design commenced
- **2018** Building of R&D lab and guest house started
- 2019 Basic design finished
- 2025 Current plan for commissioning

Site Location

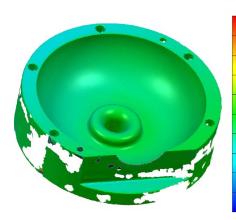
Storage ring main parameters

Parameter	Unit	Value (new-Lattice)
Energy	GeV	3
Maximum beam current	mA	400
Circumference	m	528
Lattice structure	-	5BA
Number of super period	-	20
Length of straight section	m	7.02
Natural emittance	pm rad	269
Betatron tune	-/-	44.16/16.20
Natural chromaticity	-/-	-107.79/-61.30
Natural energy spread	-/-	6.80×10-4
1 st order momentum compaction factor	-	1.824×10-4
Damping times	ms	18.857/26.002/16.03
Natural energy loss/turn	keV	406.4
Revolution time	μs	1.760
RF frequency	MHz	100
Harmonic number	-	176

- Booster ring: Shared tunnel: Fodo lattice, 504m , 0.15-3GeV
- 150MeV Linac as pre-injector Alpha Transfer magnet Chopper line ACC 2 ACC 1 ACC 3 Thanks to Helmut Wiedemann & 00 MHz Cavity **Dieter Einfeld for the idea** Quadrupole Triplet Steerer RF **RF** source RF source **RF** source electron 3 GHz 3 GHz 3 GHz gun Klystron Klystron Klystron

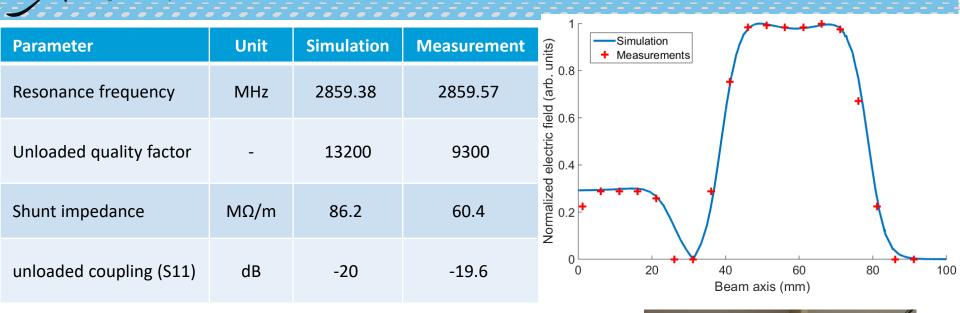
to be developed | to be procured

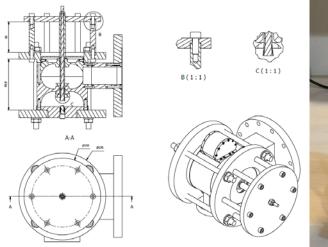
Advantages:


 High energy gain in the RF gun and therefore, lower beam emmitance by a factor of at least 3

- No need for an expensive laser system to drive the cathode
- No need for heavy and bulky solenoid magnets

- 1st prototype
 - Normal copper
 - Joined together using screws and conductive paste.
 - Mechanical accuracy
 - Dimensions error $< 20 \ \mu m$
 - Surface roughness, RA $< 0.8 \ \mu m$





Thermionic RF gun (cont.)

In several steps, it was tuned to resonant frequency of 2855.8 MHz & 38% (half cell to full cell E field ratio)

Tuning fixture

Thermionic RF gun (cont.)

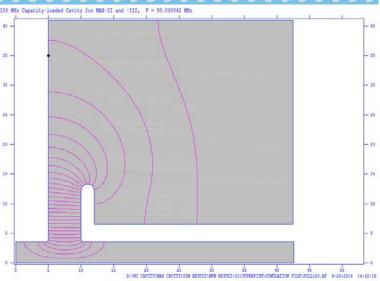
- Sample for brazing test
 - Simpler structure to test the brazing
 - 3* 10-7 torr achieved by K-type flange & turbo pump

- 2nd prototype
 - Re-designed for 2998MHz (3002.38MHz in simulation)
 - Plan :
 - Brazing the parts
 - Vacuum test
 - Conditioning
 - High power test
 - Initials tests by available 2MW klystron
 - Final tests by 4MW klystron (to be procured)

Storage ring RF system specification

Parameters	Phase 0 (Commissioning)	Phase 1 (Initial user mode)	Phase 2 (intermediate user mode)	Phase 3 (Final user mode)
Beam current (mA)	100	100	250	400
No of beam lines	0	7	12	17
Beam loss per turn (keV)	406.4 (Dipoles)	547.8	721.9	1005.6
Beam power (kW)	40.6	54.8	180.5	402.2
Total RF voltage (MV)	1.1	1.5	1.5	1.8
Synchronous phase (degree)	158.3	158.6	151.2	146
Synchrotron tune	0.0013	0.0013	0.0015	0.0016
Cavity phase stability (degree)	0.42	0.36	0.37	0.35
Cavity amplitude stability (%)	1.8	1.6	1.2	0.9
Shunt Impedance (MΩ)	1.6	1.6	1.6	1.6
No. of cavities	5	5	5	6
Cavity voltage (kV)	220	300	300	300
RF power/cavity (kW)	5*23 (15+8)	5*39 (28+11)	4*54(28+26) + 1*105 (28+77)	6*95 (28+67)
RF Amplifier Power (kW)	5*26	5*43	4*60 + 1*117	6*106
Optimum coupling	1.54	1.39	1.92 , 3.74	3.38

RF system realization strategy

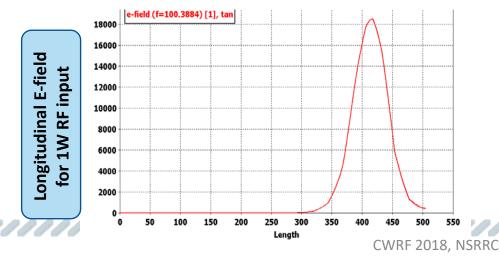

- Cavity
 - Type: Capacity-loaded cavity (similar to MAX-IV cavity)
 - In-house design, prototype fabrication
- High power amplifier
 - Type: Solid state amplifier
 - Procurement (abroad or domestic)
 - domestic companies' experiences up to 20kW SSA FM transmitters

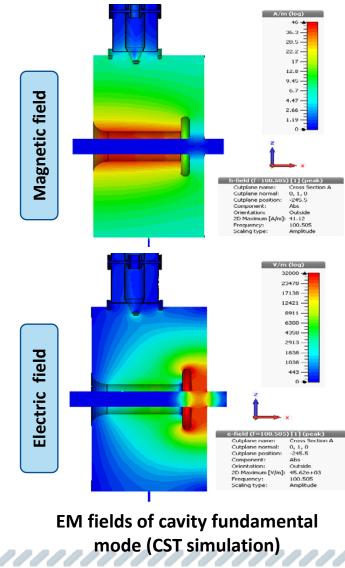
/RF 2018. NSRRC

- LLRF
 - Type: Digital
 - In-house development
- Transmission line
 - Type: 6 1/8" coaxial lines
 - Procurement (abroad or domestic)

- Initial dimension from MAX-IV CDR
- Detailed and optimized at ILSF RF Group
- EM design
 - 2D : Superfish
 - 3D : CST MS, HFSS

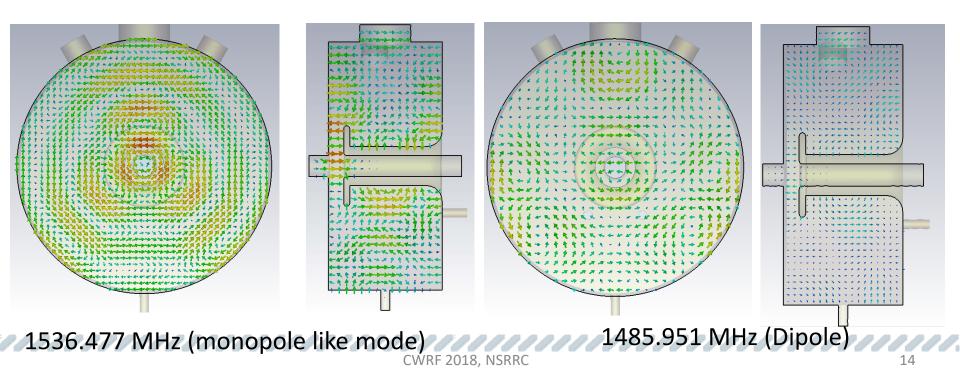
Cavity simulation results comparison for Superfish and CST

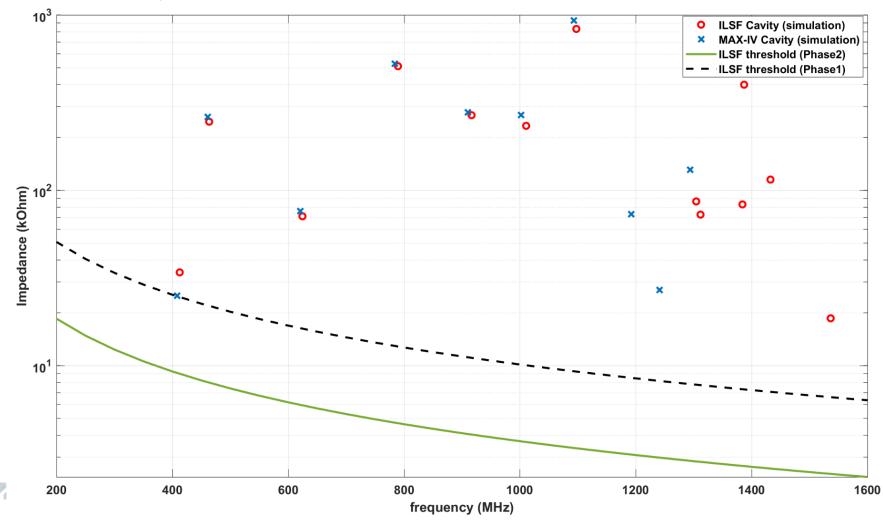

Parameter	SuperFish	CST
Resonant frequency (MHz)	100.563	100.135
Q factor	21335	22886
Shunt impedance	1.69 MΩ	1.75 MΩ



Cavity EM Design (cont.)

CST Simulation

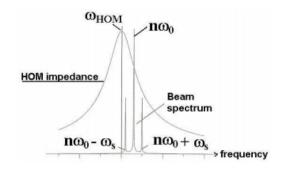



Cavity HOM calculations

- Detailed analysis of the HOMs
 - HOMs simulations by CST
 - Identification of dipole & monopole modes
 - Calculation of R_shunt & Q
 - Comparison with instability thresholds
 - Identification of modes close to beam modes

Cavity HOM calculations (cont.)

 Cavity monopoles impedances (CST simulation) & longitudinal instability threshold

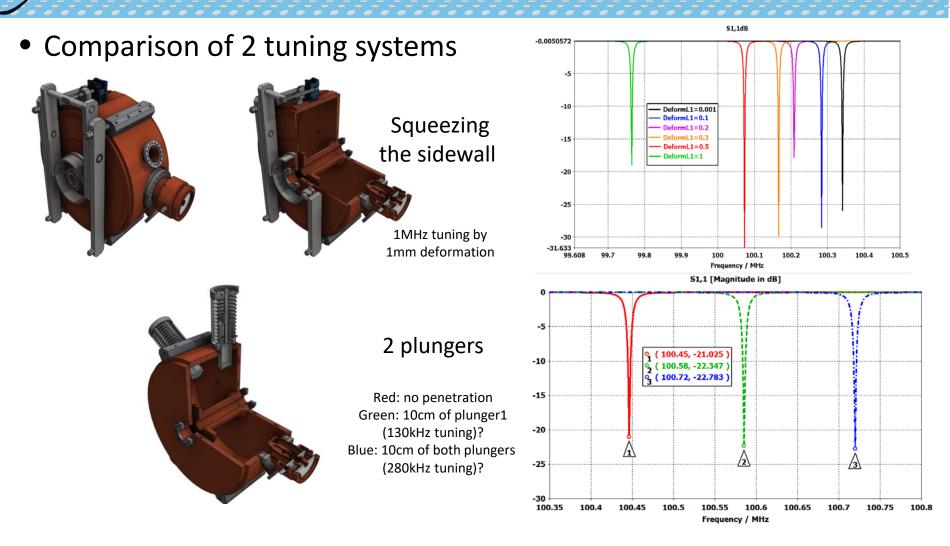


Cavity HOM calculations (cont.)

CWRF 2018, NSRRC

• Monopoles (CST simulation)

	f (MHz)	R (kΩ)	Q	Distance to beam modes Δf = f_HOM - f mnp (MHz)
	412.77	34	35069	0.191,0.773,1.355
	463.682	246	36260	0.051,0.633,1.215
	624.67	70.8	31079	0.4552,1.037
	789.56	510	40360	0.181, 0.763, 1.345
	916.54	268	43029	0.3152, 0.8972,1.479
	1010.8	233	43299	0.152, 0.597, 1.179
	1097.47	832	35403	0.032, 0.5492, 1.131
	1304.346	86.3	64370	0.263,0.8452,1.427
	1311.78	72.6	62846	0.4372,1.019,1.601
	1384.151	83	68880	0.058, 0.6402,1.222
	1387	400	53163	<mark>0.0027</mark> , 0.5792,1.161
	1432.55	115	65458	0.4572,1.039
	1536	18.6	55332	0.03523, 0.617,1.199
1	0000000	70000	10000	


$$f_{m,n,p} = p.Mf_o + n.f_o + m.f_s$$

Cavity HOM calculations (cont.)

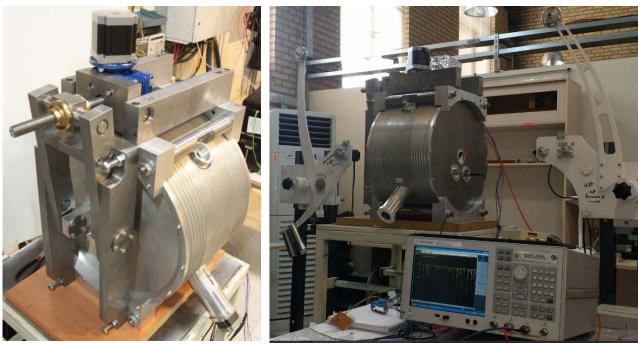
- Monopole modes are inserted in the storage ring lattice and tracking is done by Elegant code. (Beam Dynamics Group)
 - One mode (1097.47MHz, 800kOhm) will cause unstable longitudinal oscillations at 100mA current (1st phase)
 - Solutions (tracking simulation results):
 - 1. 2MHz shift is required.
 - 2. Using a fast feedback system.
 - 3. Adding 3rd harmonic cavities. (not simulated yet)
 - Almost all modes will cause unstable longitudinal oscillations at 400mA (final phase)

- Solutions:
 - 1. These modes have to be damped by a factor of 100! (simulation results)
 - 2. Shifting the frequencies but time-consuming simulations. Might be better to measure the prototype.
 - 3. Adding higher harmonic cavities to the ring in addition to the fast feedback system (similar to MAX-IV) (not simulated yet)

Cavity tuning system

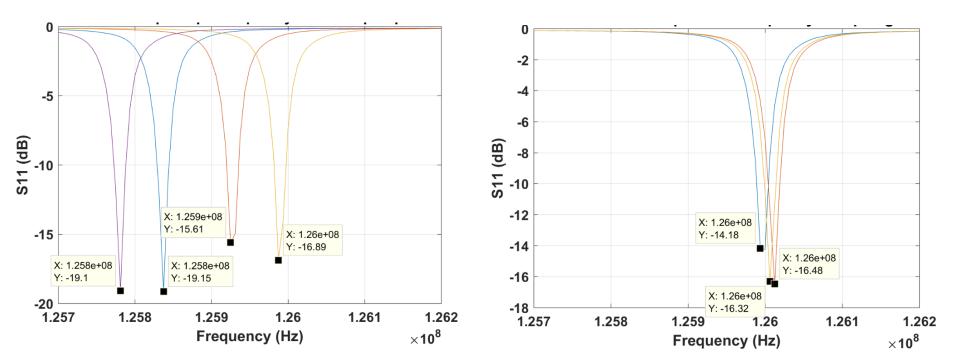
Final choice will be made after practical measurements on Al prototype (built at RF Lab.)

Comparison of tuning methods


• Existing 500MHz pillbox is modified to 125MHz capacity loaded type

CWRF 2018, NSRRC

- Comparison of 2 tuning methods & effects on HOMs
- Comparison of wire impedance method & beadpull measurement , Adding HOM dampers (in future)


Note: plunger was installed at the center of the AL cavity cylinder, not at the optimum place.

Comparison of tuning methods (cont.)

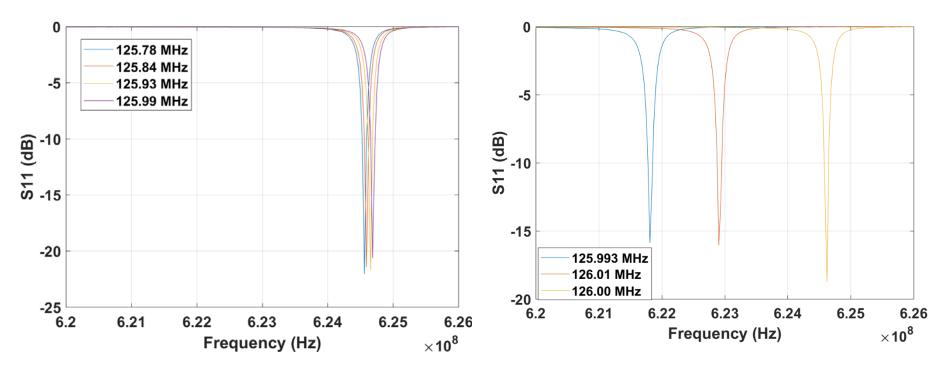
Effect on fundamental mode (126.2MHz)

Side wall squeezing

Plunger tuning


~~~~~~~~~~~~~

#### Comparison of tuning methods (cont.)

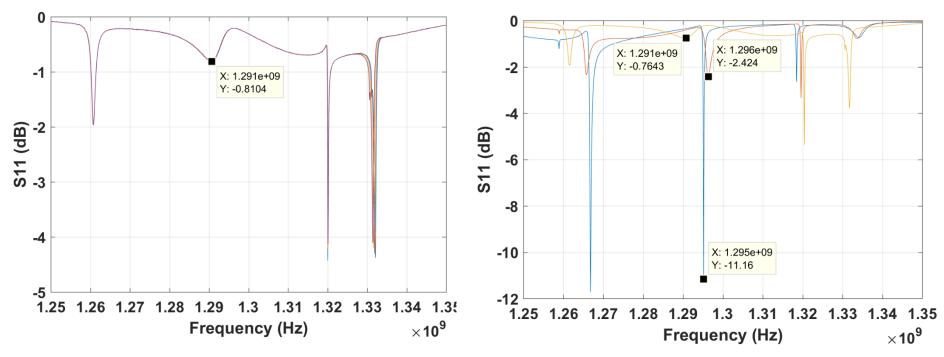

#### Effect on 1<sup>st</sup> monopole HOM (625.312MHz)

Side wall squeezing

000000000000

**Plunger tuning** 

21

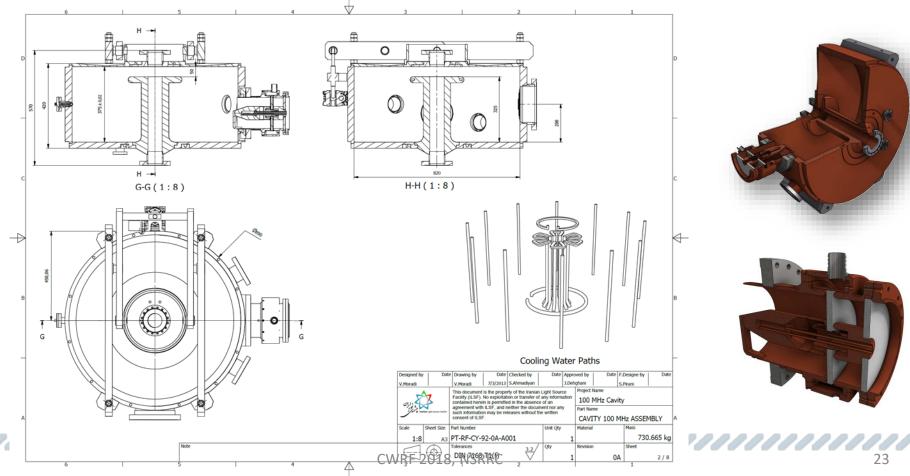



#### Comparison of tuning methods (cont.)

#### Effect on 3<sup>rd</sup> monopole HOM (1289.78MHz)

Side wall squeezing

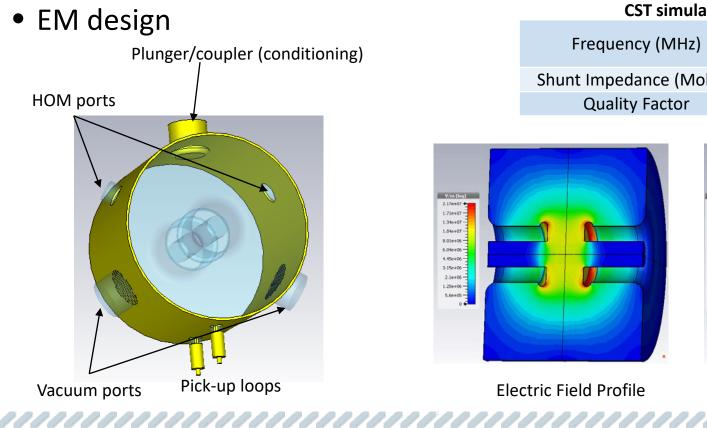
**Plunger tuning** 




 Tuning by plunger shifts the HOMs => we may hit the beam instabilities during fundamental frequency tuning. But might be good for shifting HOM.

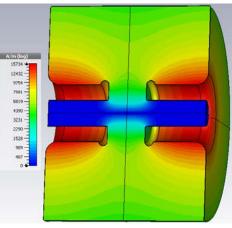
- We will probably use
  - "squeezing sidewall" for main frequency tuning.
  - Plunger for HOM tuning

## Cavity mechanical design


- Initial cooling simulation & stress calculation (needs optimization)
- Moving arm and tuning mechanism shall be modified and strengthened
- Coupler (Preferably procurement)



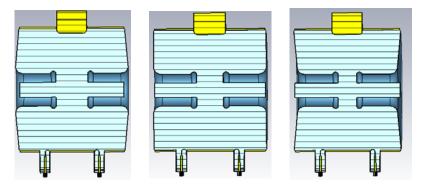


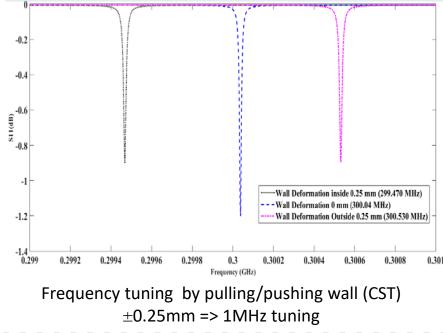

- As a pre-prototype cavity for cavity fabrication process:
  - Goals of pre-prototype: Test of fabrication methods, RF design, vacuum, ... with lower cost (<u>smaller structure-less material but meaningful RF, similar</u> <u>structure to the main cavity</u>)

CWRF 2018, NSRRC



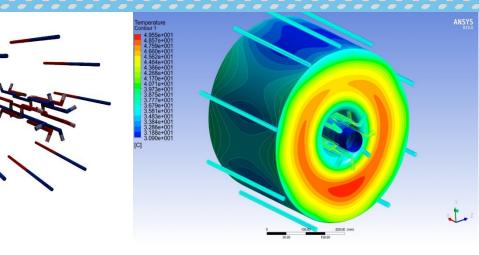
#### **CST** simulation results


| Frequency (MHz)        | 300.159 |  |
|------------------------|---------|--|
| Shunt Impedance (Mohm) | 6.9     |  |
| Quality Factor         | 23022   |  |

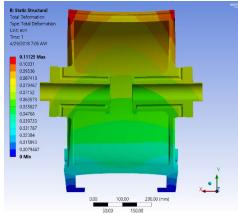



Magnetic Field Profile

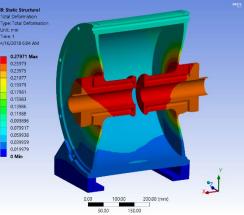
# Ard Harmonic Cavity (cont.)


- Other simulations in progress
  - Mechanical tolerances
  - HOMs
  - Coupler design
- Future simulations
  - Effect of HHC HOMs on beam stability
  - Plunger effect on HOM shifting






## 3rd Harmonic Cavity (cont.)

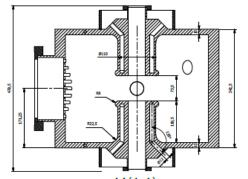

- Mechanical design
  - Cooling

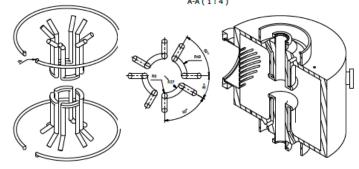


- Stress calculation
  - Tuning arms are not included yet. (in progress)



CWRF 2018, NSRRC

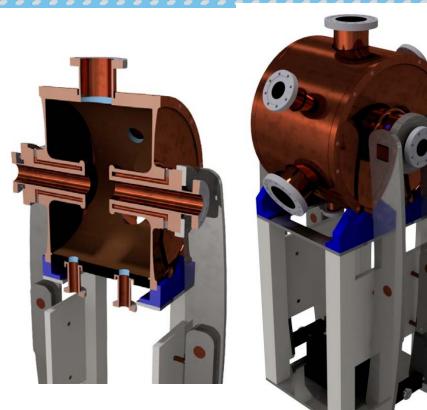




26

Cavity deformation (Vacuum effect) Cavity deformation (Thermal effect)

# Ard Harmonic Cavity (cont.)

#### • Initial mechanical model






- Still a lot of details to work on
  - Flexibility of some specs:
    - Material : OFHC (5ppm O2, even if vacuum brazing?)

CWRF 2018, NSRRC

• Grain size: less than 15um (RF or vacuum issue?)







- 100MHz
  - 3\*30kW (for booster) + 5 \*60kW (storage ring-phase 1)
  - 30kW for cavity R&D test
  - Solid state RF transmitters production in Iran



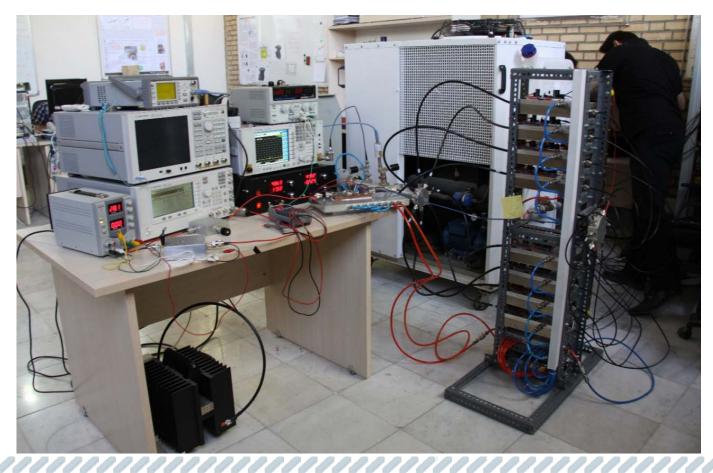


20kW SSA FM transmitter (87.5-108 MHz) 8\*2.5kW modules, hot-plug, water-cooled "30kW SSA is proposed for ILSF"

CWRF 2018. NSRRC

12kW SSA FM transmitter (87.5-108 MHz) 4\*3.5kW modules, hot-plug, water-cooled "20kW is in production"

# High power amplifier (cont.)


- 300MHz
  - 4-5kW is required for Harmonic cavity conditioning
  - Plan:
    - In-house development based on our 500MHz, 4kW experience.
    - MRFE6VP61K25HR6 or BLF888 transistors (Available in lab. stock)



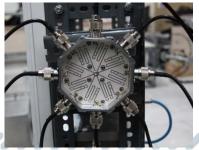
# High power amplifier (cont.)

#### • 500MHz

| Module (Vdd=50V)  | 692W<br>(limited to driver) | 17.7 dB | 67% |
|-------------------|-----------------------------|---------|-----|
| Overall (Vdd=45V) | 4.2kW                       | 15.6 dB | 59% |



#### Poster at CWRF 2014


Amplifier Module (Based on BLF578 Transistor)



8:1 Combiner



1:8 Divider



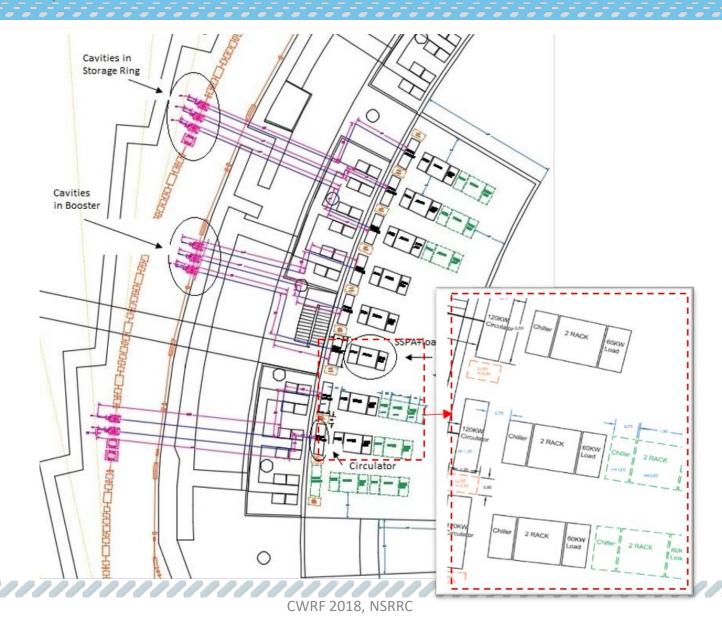


- All 8 modules were gone (AC/PS trip)
  - Re-montage



• We lost 2 when using one module as a driver for another (our driver was 11.5w)






- Fully-Digital
  - Accuracy & Flexibility
- Main components:
  - ADC:
    - 4 channels 16 bit 120 MSPS- LVDS
    - Developed at ILSF Diagnostics group for BPM, In Test.
  - DAC:
    - 2channel 16 bit 120 MSPS- LVDS
    - Developed at ILSF RF group, Tested.
  - Up/Down Converter:
    - Developed at ILSF, Tested.
    - High linearity
  - FPGA:
    - ML605
    - Algorithm implemented
- Whole system test (in progress) CWRF 2018, NSRRC

| Parameter                 | Value |
|---------------------------|-------|
| Phase stability (degree)  | ± 0.1 |
| Amplitude stability (%)   | ± 0.1 |
| Frequency stability (kHz) | <10   |
| Dynamic range (dB)        | 35    |
| Bandwidth (MHz)           | 1     |



## RF Plant configuration





# Thanks for your attention & appreciate any advices and comments

Iranian Light Source Facility