Upgrade status of the RF system for SPring-8 storage ring

T. Inagaki, H. Maesaka (RIKEN SPring-8 center), T. Ohshima, T. Asaka, C. Kondo, Y. Ohashi, S. Sasaki (JASRI)

Outline

- Overview of SPring-8 upgrade project "SPring-8-II"
- On-going upgrades of RF system
 - Klystron power station
 - Digital low level RF control
- <u>Development for future upgrade</u>
 - HOM damped RF cavity
 - Solid state amplifier (SSA)
- Summary

Upgrade project "SPring-8-II" (planned 2020's)

• RF should be stable and reliable, not to fluctuate the beam more than small beam size.

Operation parameters for SPring-8 and SPring-8-II

SPring-8 RF station

	SPring-8 (1997 ~)	SPring-8-II (2020s, planned)	
Beam energy	8 GeV	6 GeV	
Natural emittance	2.4 nmrad (non achromat)	0.1 nmrad (with undulator)	
Beam current	100 mA	200 mA	
Multi-bend lattice	2-bend	5-bend achromat	
Beam energy loss	13 MeV /turn	5 MeV /turn	
Acceleration voltage	16 MV/turn	7 MV /turn	
RF frequency	508.580 MHz	508.762 MHz	
Number of RF cavities	8 x 4 stations	4 x 4 stations	
Cavity voltage	500 kV /cavity	440 kV /cavity	
Beam loading	40 kW /cavity	60 kW /cavity	
Klystron output power	~ 700 kW	~ 400 kW	

RF cavities Bell shaped single cell cavities Q0~40,000 Rz ~ 6 MΩ

Outline

- Overview of SPring-8 upgrade project "SPring-8-II"
- On-going upgrades of RF system
 - Klystron power station
 - Digital low level RF control
- Development for future upgrade
 - HOM damped RF cavity
 - Solid state amplifier (SSA)
- Summary

(1) Replacement of klystron power station

- Stable RF system for low emittance storage ring
 - Beam fluctuation should be small enough compare to small beam size.
- Replace 20 years old power stations
 - Aged problems; bank capacitors, resistors, high voltage cables, ...
 - Discontinued products; thyristors, PLCs, panel meters,
 - 3 type of configurations; different response and stability, variety of spare components.

New power station circuit

- Simple circuit design
 - Reliable and low cost
- No voltage control (thyristor switch or IVR)
 - Thyristor generates switching noise on power line
 - IVR has a mechanical parts, which should me maintained.
 - Voltage variation is compensated by LLRF feedback
- 12-phase rectifier with 3 tap switch
 - Select cathode voltage
- Modulation anode
 - Controls the beam current for better power efficiency
- No crowbar circuit
 - Rarely had a klystron arc, but false firing

New control panel

Graphic touch panel •

SPring. 8

- PLC: Yokogawa FA-M3, Network connection: FL-net •
- All the data are recorded in the accelerator database. •

Local control

(Touch panel)

カソード電圧

82. 0 kV

ビーム電流

14.4 A

アノード電圧基準

コレクタ損失

6.6kV受電電圧

6.6kV受電電流

高周波出力

アノード電圧

50. 3 kV

アノード電流

50.2 kV

665 k

518 k

6.64 k¥

101.1 A

0. 39 mA

ヒータ電圧

10.9 v

ヒータ電流

23. 0 A

コレクタ温度

集東コイル温度

ボディ入口温度

ボディ入/出温度差 0.4 ℃

集束コイル電圧

集束コイル電流

389 v

8.01 A

89.2 °C

72.5 °C

25.1 °C

17:52

ON OFF

UP

T

1

DOWN

履歴消去

Outline

- Overview of SPring-8 upgrade project "SPring-8-II"
- On-going upgrades of RF system
 - Klystron power station
 - Digital low level RF control
- Development for future upgrade
 - HOM damped RF cavity
 - Solid state amplifier (SSA)
- Summary

(2) Digital low level RF control development

Digital control

- Flexible control parameters
- Free from the drift of analog modules
- Intelligent logical interlock on-board
- Record waveforms for trouble shooting
- Required accuracy: $\Delta V/V = 0.1\%$ rms

$\Delta \phi = 0.1 \text{ degree rms}$

- Micro-TCA.4 platform
 - Commonly used for new BPM system etc.
 - Integrate RF front end, digitizer (ADC/DAC) and FPGA on-board
 - 8 RF signals are measured in 1 module
 - Compact (1/10 of analog systems)
 - Low cost per channel

Under-sampling RTM 8ch RF inputs 1ch Vector modulator CANDOX

Digitizer AMC 10ch 16-bit, 370 MSPS ADC 2ch 16-bit, 500 MSPS DAC Mitsubishi Denki Tokki

Block diagram of RF amplitude & phase control

- IQ modulation for ampl. & phase control
- Under sampling measurement, without mixer

- <u>Digital feedback on FPGA</u>
 - Klystron FB (several 10 Hz ~ kHz)
 - Compensate voltage ripple etc..
 - Cavity FB (~several 10 Hz)
 - Compensate beam loading etc...
- <u>Control via EtherCAT</u>
 - Klystron anode voltage
 - Cavity tuner

Operation status

- New LLRF system was installed at A-station in April this year.
- The new system has been operated for 3 months.
- Measured stability and accuracy of the cavity voltage satisfy the requirement.
- We plan to install the same system to other 3 RF stations by next year.

June 28, 2018, CWRF 2018, T. Inagaki, et. al.

Phase noise on cavity pickup signal

- Phase noise was measured and compared to the data for analog system.
- New system effectively reduces the phase noise over kHz.
 (fs~ 2 kH)
- 60 Hz and its harmonics are around -80 dBc/Hz. This is acceptable level.

Courtesy T. Asaka

New vacuum control / interlock system

- Replace old hardwares
 - Discontinued PLC modules
 - Analog (NIM) interlock modules
 - GPIB data collection

New system

- PLC with touch panel
- Vacuum pressure info. to LLRF
- Redundant interlock system

Outline

- Overview of SPring-8 upgrade project "SPring-8-II"
- On-going upgrades of RF system
 - Klystron power station
 - Digital low level RF control
- Development for future upgrade
 - HOM damped RF cavity
 - Solid state amplifier (SSA)
- Summary

(4) TM020 cavity with HOM damped structure

- Damp parasitic resonances (monopole, dipole)
 - HOM absorbers (ferrite) installed at magnetic node
- High Q (60,000) and Rz (6.8 M Ω) \rightarrow High acceleration voltage
- The cavity will be used at new 3 GeV storage ring project in Japan.
- High power test
 - Without absorber: up to 135 kW (960 kV)
 - With absorber: will be tested in next year.

Courtesy H. Ego See SPring-8-II CDR

HOM absorber (Ferrite) Brazing on copper plate has been established.

(5) Solid state amplifier (SSA) development

- For future option of 508 MHz RF source, a SSA was developed.
- In design, RF power of 160 LDMOSs are combined with a cavity combiner.
- We performed a high power test of a prototype cavity combiner and one SSA module.

Collaboration with Mitsubishi Denki Tokki Systems

Already reported in CWRF 2016

New

Low power test of prototype combiner

- Prototype aluminum cavity was fabricated.
- 4-port power combining was demonstrated.
- Coupling of 4-port was adjusted by rotation of the antenna.
- Combining power efficiency of 94% was obtained.

Output port : Coax. WX-77D

Input port : loop antenna

	Real combiner	Prototype
Cavity material	Copper	Aluminum
Unloaded Q (Q_0)	46,600	27,600
Input antenna	80	4
Input coupling (β_{in})	2.9	4.8
Output coupling (β_{out})	233	19
Power efficiency	>99%	94%
-3dB band width (Δf_{3dB})	5.1 MHz	0.7 MHz

Frequency bandwidth of the power efficiency

RIKEN SPring-8 Center

High power test

SPring.8

- RF power of LDMOS output (470 W x 4 modules) was combined.
- Power efficiency of 95% was obtained at low power.
- But the efficiency was decreased at high power range.

June 28, 2018, CWRF 2018, T. Inagaki, et. al.

Pulsed RF operation

- We tested with pulsed RF power. (3 ms, 1 Hz)
- The combining power efficiency was constant around 94%.
- Power loss in CW mode was due to the thermal problems (LDMOS, circulator, cable, antenna) ?
- During the investigation, pre-amplifier (GaN-HEMT) was broken
- Due to the budget priority, the study was interrupted.
- Instead of it, we have developed 476 MHz, 90 kW pulsed SSA for buncher cavity of SACLA.

June 28, 2018, CWRF 2018, T. Inagaki, et. al.

SPring. 8

Temperature with CW 470 W LDMOS~110°C Cable~35°C Connector~50°C

Summary (1)

- For better stability and reliability, many of old components and systems should be replaced.
- We have replaced/upgraded...
 - <u>klystron power station</u>
 - Simple and reliable circuit design.
 - So far no trouble at the power station.
 - Digital low level RF control system
 - Micro-TCA.4 based system runs well with a required accuracy ($\Delta V/V=0.08\%$, $\Delta \phi=0.1$ deg.).
 - New vacuum control system and interlock system was installed combined with LLRF system.

Summary (2)

- We have developed...
 - <u>TM020 cavity with HOM damped structure</u>
 - High power operation test up to 135 kW.
 - HOM absorber will be fabricated and tested in next year
 - Solid state amplifier

- High power combining test up to 1600 W was performed.
- But the development was paused due to the priority of budget.
- We focused to develop 476 MHz, 90 kW pulsed SSA for buncher cavity of SACLA.

