

EUROPEAN SPALLATION SOURCE

Status of the ESS RF Systems and Multi-Beam IOT Test Results

Dr Morten Jensen On behalf of and with input from the RF Section and Partners including:

Rafael Montano, Rihua Zeng, Chiara Marrelli, Inigo De La Fuente, Stevo Calic, Bruno Lagoguez, Anders J Johansson, Staffan Ekström, Anders Svensson, Walther Borg, Christian Amstutz, Anirban Krishna Bhattacharyya, Linus Ternelius Svensson

www.europeanspallationsource.se

CWRF 2018 Taiwan

Outline

EUROPEAN SPALLATION SOURCE

- Introduction to ESS
- Construction Status report
- IOT test results

Artistic View

Introduction

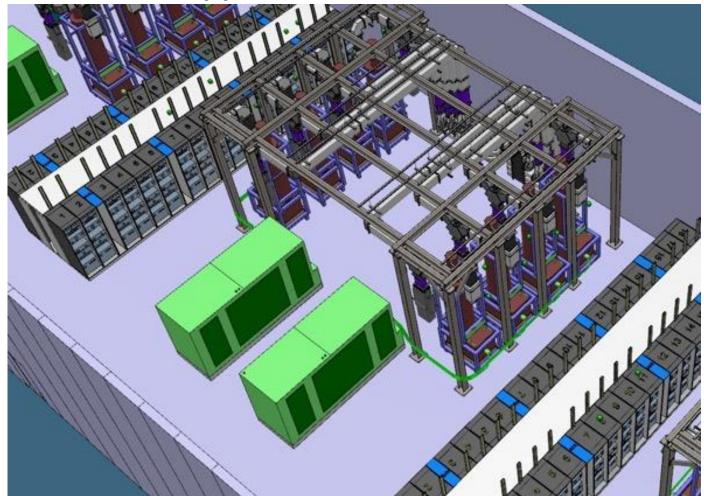
The European Spallation Source is under construction in the city of Lund, in southern Sweden.

ESS will offer neutron beams of unparalleled brightness for cold neutrons, delivering more neutrons than the world's most powerful reactor-based neutron sources today, and with higher peak intensity than any other spallation source.

Key parameters:

- 2.86 ms pulses
- 14 Hz
- 2 GeV
- 62.5 mA peak
- 5 MW average beam power
- Peak beam power 125 MW
- 155 high power RF stations

RF Scope


Accelerating Structure	Freq. (MHz)	Quantity	Max Beam Power (kW)
RFQ, DTL	352	6	2200*
MEBT	352	3	18*
Spoke	352	26	330*
Elliptical Medium Beta	704	36	860*
Elliptical High Beta	704	44 <mark>(+40)</mark>	1100*

155 high power RF stations

* Plus overhead for control

A Typical RF Cell

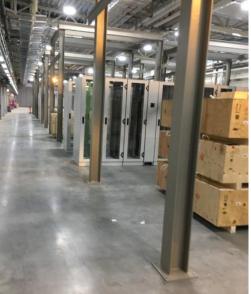
I will focus on the scope of WP8

EUROPEAN

SPALLATION SOURCE

RFDS: Spoke support structure

EUROPEAN SPALLATION SOURCE


Steel was delivered and installed

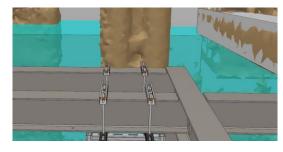
Paint and transport damage meant repainting

Before

Months of re-negotiation to be allowed to re-paint within the building

MB and HB support structures

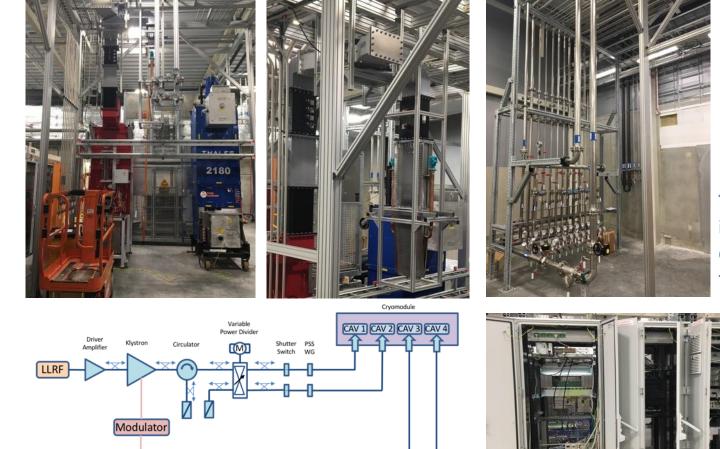
EUROPEAN SPALLATION SOURCE



Top structure assembled around 4 forklift trucks

Complicated lift with 4 synchronised forklifts trucks plus a 5th for pillars

First structure erected last week

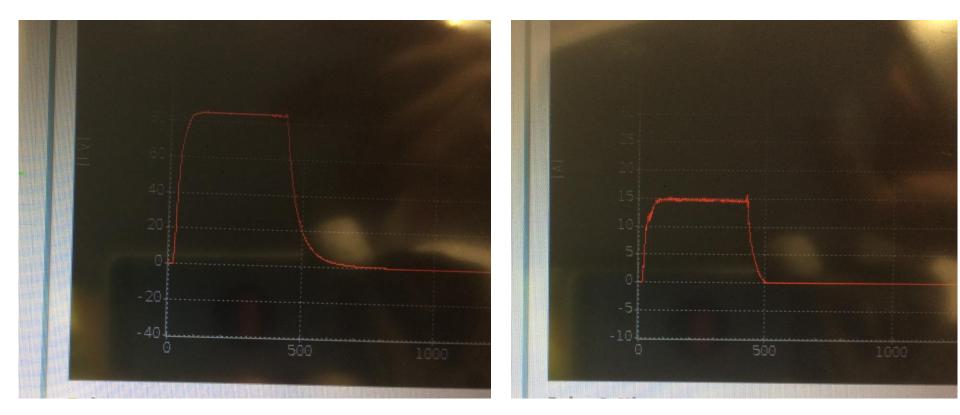

Multiple clashes with pipework, hangers, sprinklers ... not within the agreed envelopes

RF Installation and Test Activities in Test Stand 2

LLRF

Test Stand 2 for cavity testing: Two klystrons each feeding 2 cavities

EUROPEAN SPALLATION SOURCE

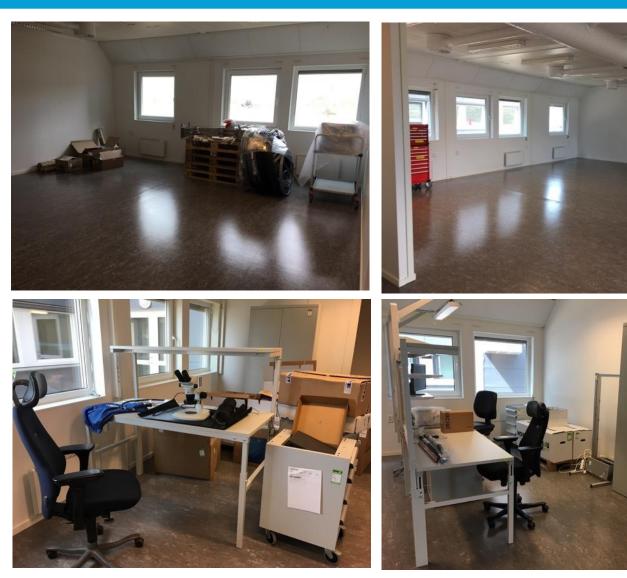

Toshiba klystron and interlock system operational for HB cavity testing in Uppsala

> Racks are being used to trial the installation and to see how we optimise power distribution, mechanical supports, cable routing, grounding etc.

Our First High Voltage Pulse on a Klystron at the ESS Site

83 kV

15 A



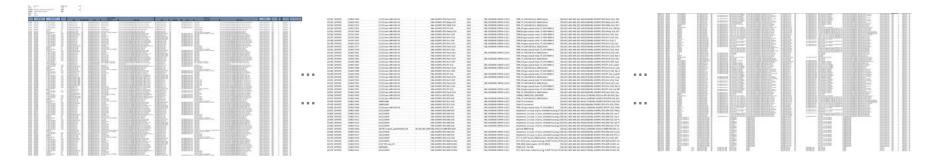
EUROPEAN SPALLATION SOURCE

RF Technical Lab at Site Office

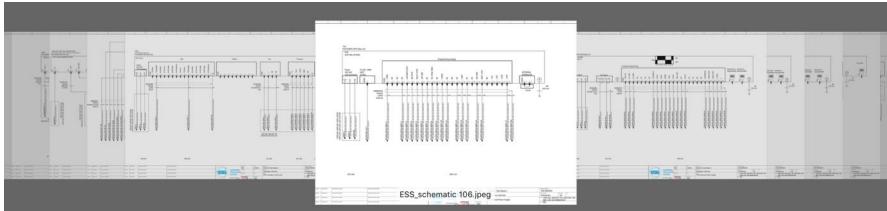
EUROPEAN SPALLATION SOURCE

Moved in three weeks ago

Lab needed for:


- R&D
- Incoming inspections
- Test and setup prior to deployment
- Short term storage
- Extended testing

Cable Database, Rack Layout, Electrical Schematics being done in-house

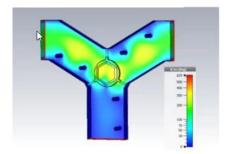


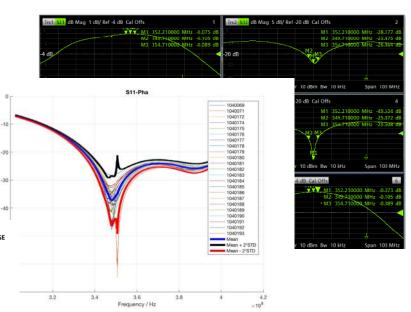
EUROPEAN SPALLATION SOURCE

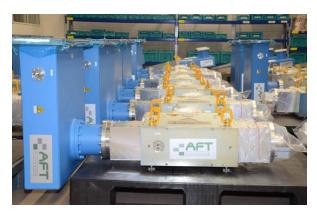
Detailed information for 15'000 RF system cables already in now database

Electrical schematics and drawings for rack layout and installation

Deliveries, incoming inspections, testing and storage

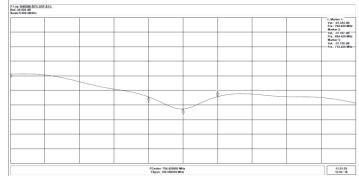

Spoke circulators: 352 MHz, 400 kWp


26 circulator received and low power tested but the vendor discovered a possible assembly error and the units will be returned for checking.



MB/HB circulators: 2 designs performed and prototypes tested at low power. Parasitic resonance risk. High power test to be done soon.

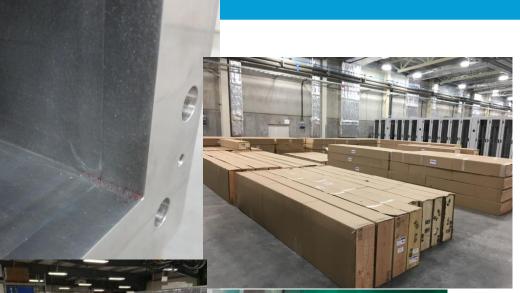
Procedures for VNA Measurement of Ferrite Load 352MHz 400kWp 20KWavg 6 1/8'' EIA						
		4				
	Name	6				
Author	Rihua Zeng, Bruno Lagoguez , Walther Borg					
Reviewer		9				
1	1					
TABLE	OF CONTENT	PAG				
1.	MATERIAL NEEDED4					
2.	DELIVERABLE AFTER MEASUREMENT4					
3.	CONNECT ADAPTOR (6 1/8" EIA TO N-CONNECTOR)					
4.	VNA SETUP AND CALIBRATION7					
5.	S11 MEASUREMENT16					
6.	VNA SETUP AND CALIBRATION FOR TDR MEASUREMENT 22					
7.	TDR MEASUREMENT					
8.	DISCONNECTION					
9.	REPORT					



SPALLATION SOURCE

• Spoke loads: 26 loads received and tested at low power. 11 dBMag 10 dB/ Ref 0 dB Ca

MB/HB loads:



RF Windows

EUROPEAN SPALLATION SOURCE

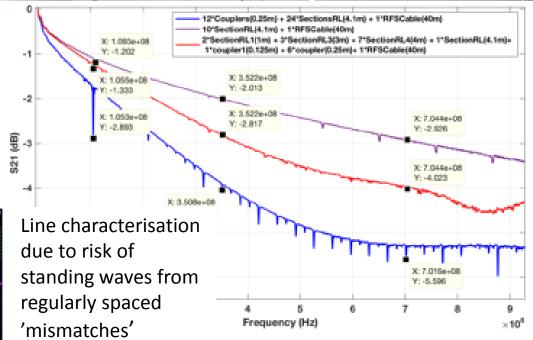
Waveguides

- Approx 5000 pieces Delivery of 22 (many hand packed) containers has started
- Serious issues with dirt and twist

Phase Reference Line

EUROPEAN SPALLATION SOURCE

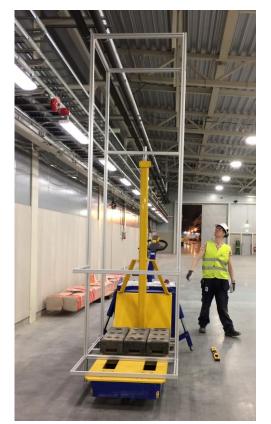
500m PRL line installed from ion source to Dogleg ~100m PRL line remain to be installed 119 rigid line sections with


- heating cables, Temperature sensors
- 53 directional couplers

Pedestals, Nuts and bolts

• Including 144'000 waveguide nuts and bolts!

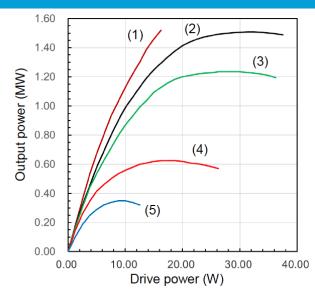
Mechanical supports

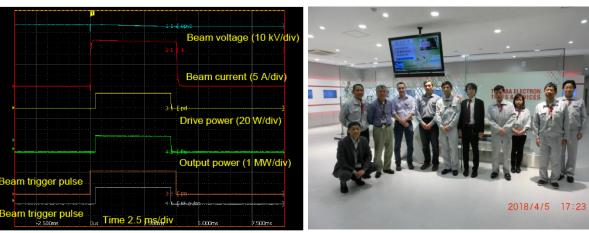


EUROPEAN SPALLATION SOURCE

1.5 MWp, 704 MHz Klystrons

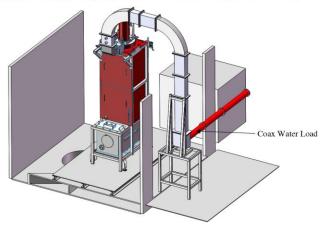
EUROPEAN SPALLATION SOURCE


Bespoke klystron truck procured and test run


Three prototypes

- Toshiba Prototype currently in operation in Uppsala
- CPI Prototype installed in TS2: High power testing started
- Thales Prototype in TS2: Awaiting test
- Medium Beta Series (18 Toshiba, 18 CPI)
 - Three shipped, 1st klystron being delivered to 27th June
 - 4th on test
 - CPI deliveries start in September
- Tenders being prepared for High Beta part 1 44 units
- 4 klystrons per modulator

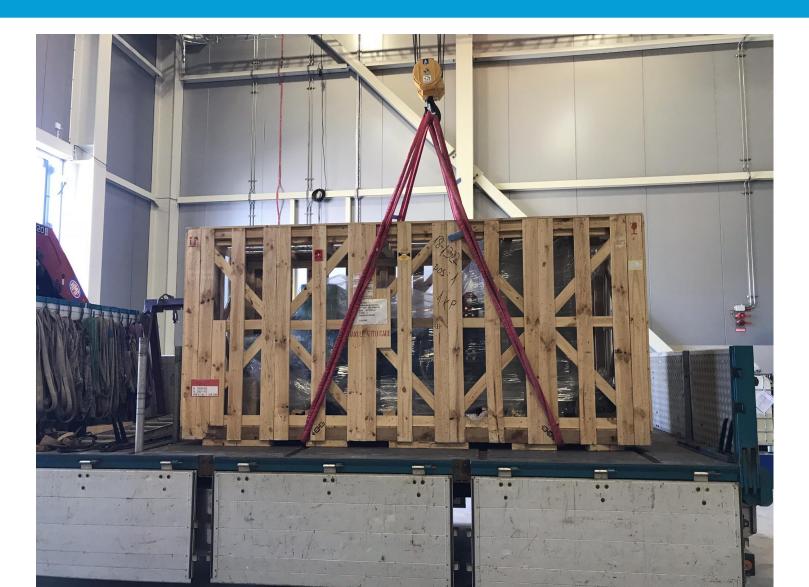
Toshiba FAT, some results



(a): Waveforms of beam voltage, beam current, drive power and output power for 1.5-MW operation

No.	Beam voltage	Beam current	Solenoid current		RF power	Iris
	(kV)	(A)	1	2	(MW)	
1	115.0	23.6	10.0	10.0	1.51	
2	106.4	21.2	10.0	10.0	1.52	
3	98.0	18.7	9.0	8.5	1.23	
4	75.0	12.7	7.0	8.0	0.625	Iris 1
5	61.2	9.4	5.5	7.0	0.350	Iris 2

1st CPI klystron to be tested at the beginning of September


MSR Test Stand Layout for the VKP-8292A Klystron for ESS

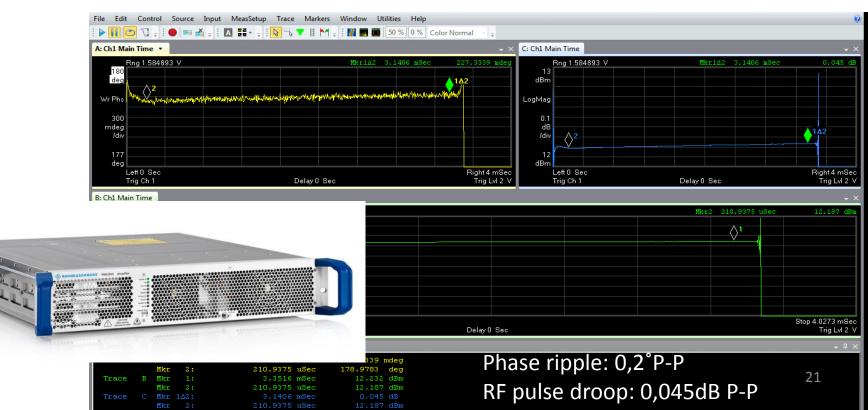
Delivery of the first ESS MB Klystron on 27th June 2018




EUROPEAN SPALLATION SOURCE

(The official) Problem Slide

- December 2017: Arc detector trips observed during the testing of the Toshiba klystron prototype.
- Cause identified in RF discharge in the T-bar transition of the output circuit
- Toshiba re-designed the part and came for repair



Solid State Drive Amplifiers for MB/HB

- R&S chosen, frame-work in place for up to 120 units
- 1st prototype measured
- 2 pre-series units received
- Site testing started last week will release the next batches

EUROPEAN SPALLATION

SOURCE

Splitter box, E- Pick up and Pin diode

EUROPEAN SPALLATION SOURCE

- Splitter boxes designed and under test
- Pin diodes units and PSS RF switches designed and under manufacture

Arc detectors

- Order placed for gallery arc detectors (> 500). Delivery planned in 3 months (approx.)
- Validation done on prototype (thanks to STFC)
- Technology for arc detectors for the tunnel under consideration

Please share your experience and comments on ADs for the tunnel

EUROPEAN SPALLATION SOURCE

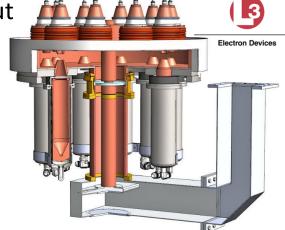
- LLRF prototypes has been running in two test systems in Lund and two in Uppsala.
- Main digitiser boards have been updated to latest version of FPGA hardware, and now have a newly developed AXI-framework running
- Additional modules incl Piezo drivers + PSUs and LO being developed by in-kind partners in Poland. Design complete and in manufacture.
- Procurement and assembly of the first in-house master oscillator progressing with the first unit expected by end of 2018

ESS placed contracts for two **Technology Demonstrators**

- L3 Electron Devices
- Consortium of *Thales Electron Devices (TED)* and *Communications & Power Industries (CPI)*

Key Parameters	Specification	
Frequency	704.42 MHz	
Maximum Power	1.2 MW	
RF Pulse length	Up to 3.5 ms (@ 14 Hz)	
Duty factor	Up to 5%	
Efficiency	Target > 65%	
High Voltage	< 50 kV	
Design Lifetime	> 50,000 hrs	

• CERN to set up a test stand and carry out site testing


The ESS MB-IOTs

- 10 Electron guns placed in a circle
- Cavity with 10 separate interaction gaps and single output
- Magnetic focusing (Permanent magnet or solenoid)
- Output windows based on high power klystron designs
- Suppliers carried out extensive modelling and simulation (beam optics, mode analysis, thermal and structural analysis, innovative manufacturing, ...)
- Manufacturing validation through single beam prototyping and sub-assembly test vehicles, ...

THALES

Design driven by reliability and efficiency

HALES

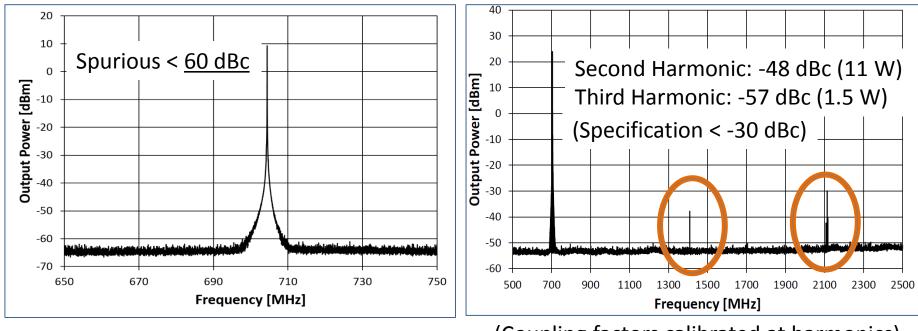
SOURCE

Electron Devices

From Simulation to Reality: L3

EUROPEAN SPALLATION SOURCE

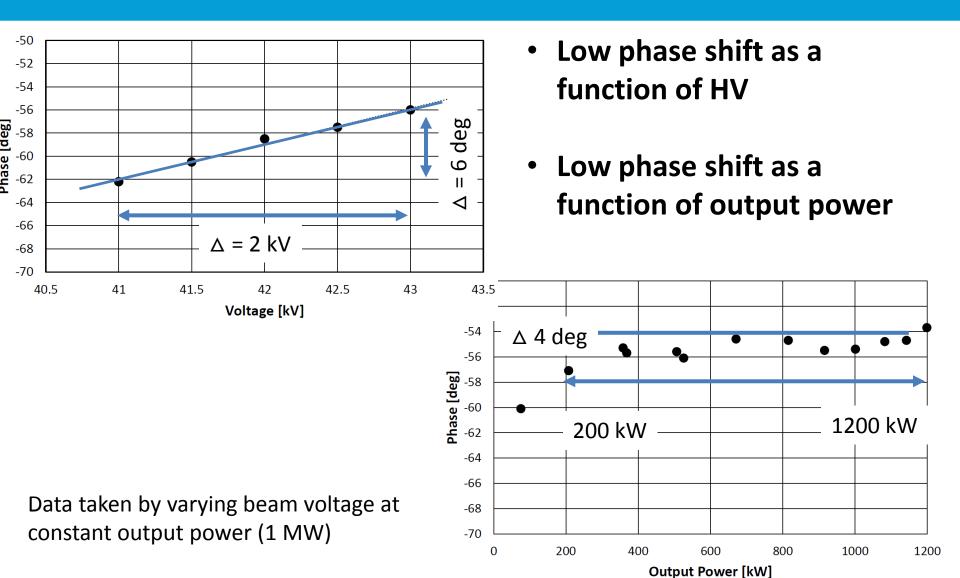
THALES


L3 IOT Factory Acceptance Results

EUROPEAN SPALLATION SOURCE

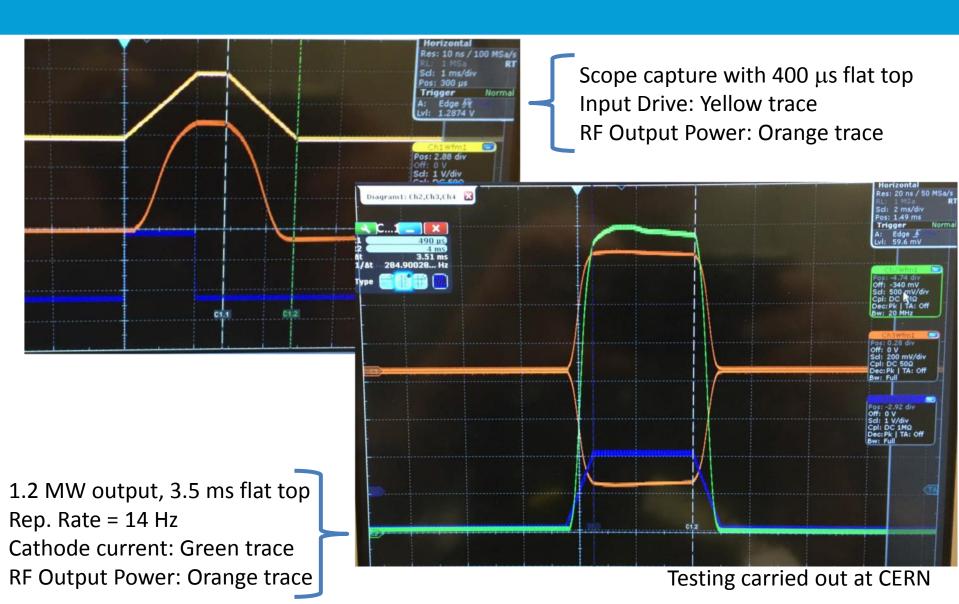
Output spectrum at 1 MW

Harmonic content at 1 MW

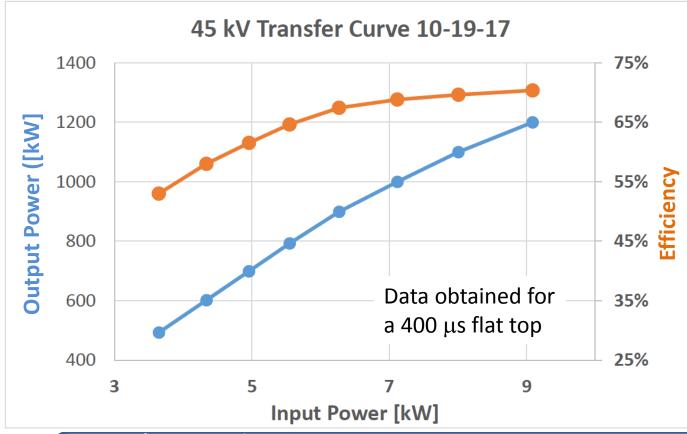

(Coupling factors calibrated at harmonics)

No power seen from harmonic cavity modes and no sign of instability

L3 IOT Factory Acceptance Results



L3 IOT Results



L3 IOT Results

EUROPEAN SPALLATION SOURCE

Long pulse operation:

1.2 MW achieved with 3.5 ms flat top with 1 ms ramps on leading and training edges

1.14 MW achieved at 4 ms flat top, limited by the drivers

TED/CPI IOT Results

Output Power and Efficiency 1400 80 Transfer curve to 1.2 MW 70 1200 Data obtained at 45 kV Output Power (kW) 009 009 000 000 000 60 1 ms flat top 1 ms leading and trailing, % 50 edges Efficiency 14 Hz rep. rate 40 30 20 200 10 Output Power Efficiency 0 0 2000 10000 0 4000 6000 8000 Drive Power (W)

Yellow: Total Collector current

EUROPEAN SPALLATION SOURCE

MBIOT Status

World Record

DISPLAT

\$

MBIOTs delivered to CERN for testing Both MBIOTs have delivered 1.2 MW Overall Technical Specification achieved

Thales/CPI MBIOT

Testing at CERN

- ESS, together with industry, delivered two successful technology demonstrators
- Budget, schedule and risk constraints at ESS means that ESS must opt for klystrons for the first part of the high beta linac
- ESS will continue to follow the development and hope that new high power accelerators will be able to benefit from the investment
- The MB-IOTs developed for ESS have been constructed using CW capable components. High power CW operation could result in a payback time of 1 – 2 years through savings in electrical cost