Radio Frequency Power Station for the ESS Linac Spoke Cavity

C. Pasotti, M. Cautero, A. Fabris (Elettra - Sincrotrone Trieste)
C. Martins, P. Torri, R. Yogi (European Spallation Source)
Neutron science to investigate:
- magnetic atoms,
- light atoms,
- movement of atoms,
- isotopes,
- materials

ESS high neutron flux is generated by SPALLATION:
- high energy protons hit a Wolfram target
- \((H^+)\) Proton Linac, beam power target 5 MW, Linac energy 2.0 GeV
- Linac commissioning will start at lower energy

 Courtesy of Ian S. Anderson
ESS CONSTRUCTION

Sweden, Denmark and Norway cover the 50% of costs,

Several EU and not EU partners cover the rest, mainly with the In Kind Contribution formula: devices and equipment designed and custom made for the ESS project.

ITALIAN IKC CONTRIBUTION:

Elettra, INFN and CNR are the partners for the Italian IKC to ESS. Elettra contributes with magnets, magnets power converters, diagnostic (wire scanner acquisition system) and

26 equivalent 352 MHz 400 kW peak Radio Frequency Power Stations for the Linac Spoke section.
Trilateral IKC Agreement

Scope of Work

26 RFPS units

400 kW

Elettra
- project management
- RFPS design and prototypes development
- technical specification
- construction follow-up and QA/QC
- verification and validation

ESS-ERIC
- RFPS design and prototypes development
- technical specification

INFN
- tender documentation
- performs the tender procedure
- RFPS purchasing

RFPS construction outsourced. It will be assigned to the successful contractor as required by the Italian public procurement Law
RFPS features:

• RF power requirement range per spoke cavity: from 260 kW to 330 kW pep*
• one RFPS will power one spoke cavity to accomplish an independent setting of the RF power level, amplitude and phase regulation
• frequency 352.21 MHz
• periodic pulse operation at 14 Hz, nominal flat-top width 3.5 ms
• non standard flat-top minimum width 140 us only for RF conditioning purpose
• RF power distribution losses downstream each RFPS ≈ 36 kW pep (worst case)
• 400 kW is the nominal RF output power

* pep = peak envelope power is the average power measured at the crest of the pulse envelope during one repetition cycle.
RFPS Description

- RF power amplification: two TH 595 A tetrode tubes*, 210 kW each with a 3dB hybrid combiner to add together their output power. Single tetrode branch use not expected.
- A single HV modulator feeds the two anodes in parallel, while heaters and the other electrodes have its own power supply for independent regulation purposes.
- RF pre-amplifier is based on water cooled solid state transistor technology, 1dB compression point @69 dBm. Static gain adjustment is also foreseen.
- RF input distribution should also protect the RFPS against internal/external faults and allow the RF phase and amplitude balancing between the two RF branches.
- Turn key system

*The possibility to achieve the nominal power with solid state transistor base amplifier has been investigated and discounted as costly, needlessly complex and not fully tested.
RF pulse quality depends:

- on the SSA pre-driver pulse quality
- on the tetrode electrodes power supply dynamic performances and output voltage regulations
- on the heater power supply quality

RF pulse features:

- to be measured after a «warm-up time» at constant external RF drive
- to be measured after a «stabilization time», Ts < 0.5 ms that shall mask any overshooting and/or following errors

Pulse quality:

- Maximum pulse drop ≤ 0.25 dB
- Spectral quality of the amplified signal

Pulse to pulse stability:

- Average amplitude variation ≤ ± 0.5%
- Average phase variation Δφ ≤ ± 0.5°
ESS will deliver a PLS_START and PLS_STOP trigger signals and a pulse shaped RF driving level

After receiving the PLS_START, the RFPS shall:

- check the proper RF level (RF overdrive interlock)
- bias the tetrode tubes, G1 Voltage (ENERGY SAVING!!!)
- RF drive the amplification chain and deliver the output pulse
- sample the main RFPS parameters at the flat-top
- stop the RF output power at PLS_STOP or
- cut the RF pulse after 3.6 ms any case
- blank the tetrode, G1 voltage offset
- ignore any trigger signal if issued within 71 s from the previous one
- be ready for next output pulse after 71 ms
HV modulator topology and layout STRONGLY RECOMMENDED in the technical specification!

- Based on off-the-shelf components (cost optimization)
- Both tetrode anodes energy requirement is stored in a capacitor bank, size to allow a maximum pulse drop, fed by a capacitor charger.
- Equipped with all the required measurement, control, and safety protection devices (no crowbar).
- Low frequency harmonic emission and AC voltage flicker to preserve the AC grid quality requirement... big issue to be solved!

TH 595 A
- Anode Voltage: 16.5 kV
- Anode Current (average): 18.9 A × 2
Tetrode G1 & G2 power supplies

G1 & G2 topology and layout SUGGESTED in the technical specification!

✓ off the shelf power supply are expensive and/or do not offer the adequate voltage regulation bandwidth

✓ each tetrode will have its own G1 and G2 power supply

✓ best solution is a dedicated switch mode power converter having the requestes output voltage regulation and current limitation features

✓ At the tender publication day, this solution was only an idea supported by several simulations having good result so that the Tenderers could endorse this idea or propose others solutions.

G1 Voltage -210 V G2 Voltage 900 V
G1 Current 1.7A G2 Current 0.26 A

These days G2 prototype PS under testing

C. Pasotti
The RFPS is to be considered as a system working in connection with other systems, and interfacing human operators in different conditions. The RFPS will be installed in a non-restricted access area.

So it shall be safety-integrated in order to:

- **eliminate the identified hazard,**
 informed design steps, according to and compliant with the Regulatory Framework
- **reduce risk of those unavoidable,**
 RFPS control system, fail-safe, pro-active, visualizing status to involved personnel
- **signalize the residual risks associated with the machinery**
 RFPS safety user guide and related elements
The RFPS is a system, composed by different elements which relate to different regulatory areas. A list of European Union Directives cover these areas.

Besides, each area is covered also by multiple standards from different International and European Organizations or Committees. However the EU directives covers the National Swedish standards.

<table>
<thead>
<tr>
<th>Area</th>
<th>EU directives</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery Safety</td>
<td>2006/42/EC</td>
<td>Machinery safety</td>
</tr>
<tr>
<td></td>
<td>89/391/EEC</td>
<td>Measures to improve safety and health at work</td>
</tr>
<tr>
<td>Electrical Safety Wiring</td>
<td>2014/35/EU</td>
<td>Electrical safety: low-voltage electrical equipment</td>
</tr>
<tr>
<td></td>
<td>2006/95/EU</td>
<td>Electrical equipment designed for use within certain voltage limits</td>
</tr>
<tr>
<td>Non-Ionizing Radiations</td>
<td>2013/35/EU</td>
<td>Limiting the exposure of workers to risks from electromagnetic fields</td>
</tr>
<tr>
<td>Ionizing Radiations</td>
<td>2013/59/Euratom</td>
<td>Basic safety standards for exposure to ionizing radiation (from 2018)</td>
</tr>
<tr>
<td>RoHS</td>
<td>2011/65/EC</td>
<td>Restrictions on the use of certain hazardous substances in electrical and electronic equipment</td>
</tr>
<tr>
<td>Noise Emissions (audio)</td>
<td>2003/10/EC</td>
<td>Health and safety at work: exposure to noise</td>
</tr>
</tbody>
</table>
Twenty-six (26) RFPS units shall be built, tested and commissioned.

The first RFPS unit will be extensively tested at the Contractor premises (VALIDATION) in order to:
- check the design and the technical solutions
- recommend optimizations to best meet the specification if needed
- finalize the FAT procedure to improve its effectiveness versus time frame

At this stage, it should be possible to add design optimization and perform minor modifications, which cost, if any, shall be discussed and agreed among the parts (Voltage flicker mitigation, for example).

Factory Acceptance Tests done on ALL twenty-six (26) RFPS units

Site Acceptance Tests will be performed on the first unit only at ESS premises in the final installation layout with dedicated care to:
- mechanical vibration issues, induced by the pulsed regime in continued operation status,
- thermal fatigue and drift,
- EMC noise and immunity.
RFPS roadmap

Three project phases are planned according to ESS standard:

1. **contract masterplan**
2. RFPS design, at the most detailed level
3. design of engineering activities for RFPS construction,
4. publishing and updating of Technical Design Report
5. main material procurement
6. Critical Design Review meeting, during which the TDR shall be discussed and approved

1. construction of the first RFPS unit,
2. validation and FAT of the first RFPS unit, according to the specifications
3. “as built” documentation update and release from construction and validation sub-phases,
4. Readiness Review Meeting, upon the positive FAT procedure regarding the first RFPS unit,
5. delivery and SAT at ESS premises of the first RFPS unit.

1. construction of the remaining 25 RFPS units,
2. FAT on each RFPS unit and, if successful, shipment approval,
3. delivery of the RFPS units at ESS premises,
4. final assessment and release of the RFPS units’ documentation,
5. a System Acceptance Review Meeting

Phase 1 ≈ 2 months
Phase 2 ≈ 1 year
Phase 3 ≈ 1 year

Contract time schedule is really challenging!!!
A contract is successfully when:
- goods fully comply the specifications
- time schedule is met
- cost is reasonable within the expectations

To achieve this goal the Customer shall closely follow the goods design, production and commissioning.

To achieve this goal the Contractor shall have the full understanding of why the requested goods have been so specified and shall have a fabrication expertise (pre-qualification!)

Customer and Contractor shall work together to make successfully the contract

through a clear contract management and a quality assurance program put in place at the design, manufacture, commissioning and installation steps.
The FREIA laboratory, UPPSALA University (Sweden), Department of Physics and Astronomy, has a dedicated test facility for studying the performance of superconducting accelerating SPOKE cavities.

FREIA purchased two RFPS 400 kW 352 MHz units from two different companies having performances close to the ESS requirements but 28 Hz and CW capabilities.

Elettra has performed several measurement campaigns on both the RF stations to assess their performances and finalize the technical specifications.
Several tests have been repeated to assess the TH 595 performances at Thales premises and at FREIA laboratory.

One of the FREIA RFPS was operated slightly changing the tube’s tuning parameters (G1, G2 and HV voltages):

- TH 595 Matlab model to forecast the tube operating curves developed (V. Ingravallo)
- Useful data on gain and efficiency taken

TH 595 Measured Features

<table>
<thead>
<tr>
<th>Anode (kV)</th>
<th>G1 (V)</th>
<th>G2 (V)</th>
<th>Tube Gain (dB)</th>
<th>RF Power min (kW)</th>
<th>RF Power max (kW)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>17</td>
<td>-200</td>
<td>900</td>
<td>15.94</td>
<td>16.4</td>
</tr>
<tr>
<td>M2</td>
<td>16</td>
<td>-200</td>
<td>900</td>
<td>15.73</td>
<td>15.8</td>
</tr>
<tr>
<td>M3</td>
<td>16</td>
<td>-200</td>
<td>850</td>
<td>15.63</td>
<td>14.2</td>
</tr>
<tr>
<td>M4</td>
<td>16</td>
<td>-220</td>
<td>900</td>
<td>15.49</td>
<td>11.5</td>
</tr>
<tr>
<td>M5</td>
<td>17</td>
<td>-220</td>
<td>900</td>
<td>15.71</td>
<td>11.7</td>
</tr>
<tr>
<td>M6</td>
<td>17</td>
<td>-220</td>
<td>950</td>
<td>15.84</td>
<td>13.3</td>
</tr>
<tr>
<td>M7</td>
<td>17</td>
<td>-240</td>
<td>950</td>
<td>15.52</td>
<td>9.7</td>
</tr>
<tr>
<td>M8</td>
<td>17</td>
<td>-240</td>
<td>950</td>
<td>15.58</td>
<td>8.5</td>
</tr>
<tr>
<td>M9</td>
<td>16</td>
<td>-240</td>
<td>900</td>
<td>15.26</td>
<td>8.2</td>
</tr>
<tr>
<td>M10</td>
<td>17</td>
<td>-240</td>
<td>950</td>
<td>15.52</td>
<td>9.9</td>
</tr>
<tr>
<td>M11</td>
<td>17</td>
<td>-230</td>
<td>900</td>
<td>15.55</td>
<td>11.1</td>
</tr>
</tbody>
</table>

* LL_RF driving signal = 0.52, maximum drive 0.54 from M4 to M11.

Table: Factory set parameters.

IPA 1 Anode Parameters

<table>
<thead>
<tr>
<th>Anode (kV)</th>
<th>G1 (V)</th>
<th>G2 (V)</th>
<th>Gain @ max power (dB)</th>
<th>Efficiency @ max power</th>
<th>RF Power min (kW)</th>
<th>RF Power max (kW)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>17</td>
<td>-200</td>
<td>900</td>
<td>15.90</td>
<td>65%</td>
<td>16.4</td>
</tr>
<tr>
<td>M4</td>
<td>16</td>
<td>-220</td>
<td>900</td>
<td>15.50</td>
<td>68%</td>
<td>11.5</td>
</tr>
</tbody>
</table>

IPA 2 Anode Parameters

<table>
<thead>
<tr>
<th>Anode (kV)</th>
<th>G1 (V)</th>
<th>G2 (V)</th>
<th>Gain @ max power (dB)</th>
<th>Efficiency @ max power</th>
<th>RF Power min (kW)</th>
<th>RF Power max (kW)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>17</td>
<td>-200</td>
<td>900</td>
<td>15.60</td>
<td>65%</td>
<td>22.9</td>
</tr>
<tr>
<td>M9</td>
<td>16</td>
<td>-240</td>
<td>900</td>
<td>14.90</td>
<td>68%</td>
<td>13.4</td>
</tr>
</tbody>
</table>

* LL_RF driving signal = 0.52, maximum drive 0.54 from M4 to M11.
PF and Flicker measurement

Harmonic distorsion, Power Factor and flicker measurements carried out on both the FREIA RFPS units (T. Ciesla)

Anode power supply: 6-pulse rectifier with soft start circuit
RF output power: 187 kW per tube.

HV Modulator with capacitor charger.
C. Martins topology
Capacitor charger limited at 37 kW
At the tender publication time the G2 and G1 power supplies were only an idea supported by numerical simulations.

Today the G2 prototype has been built and successfully tested.

BoM and board cost < 1000 Euro

Some «burn out» time is still required.

The tender winner can decide to implement it.

G2 power supply prototype

Features: 1000 Vdc, 0.5 A, Peak Power 500 W
switch mode power converter with voltage regulation and current limitation capabilities
voltage recovery time < 150 μs

G2 impact on the RF pulse envelope shape
RFPS manufactures outsourced. The tender’s technical specification contains:

- mandatory requirements (Thales tube 595 A)
- strongly recommended solutions (HV modulator topology)
- «suggested» design (G1 and G2 power supplies)

balancing cost versus performances

Any case the final contractual liability belongs to the Contractor

Thanks to the FREIA laboratory the RFPS technical specifications gained ground and feasibility

The main RFPS contract challenge is the PRODUCTION TIME SCHEDULE!

Strong interaction is foreseen between Parties to successfully achieve the Scope of Work!
Thank you!
Solid State vs Tube technology

PROS & CONS comparison table between the two technologies for the RFPS project

<table>
<thead>
<tr>
<th>RF Source (Solid State transistor)</th>
<th>RF Source (Tetrode TH595)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>Feature</td>
</tr>
<tr>
<td>5 - 10 Euro/W, CW RF power cost, but the system becomes very complex and a further cost reduction it is not plausible</td>
<td>Cost</td>
</tr>
<tr>
<td>Short and medium term good, it becomes an issue at long term</td>
<td>Discontinuity</td>
</tr>
<tr>
<td>To achieve 400 kW a huge number of modules shall be combined. Gain and phase dispersion of each module shall be carefully set to avoid unwanted losses and output power reduction</td>
<td>Operability</td>
</tr>
<tr>
<td>Quick replacement possibility providing the right choice of the combining's and connector's technology</td>
<td>Servicing</td>
</tr>
<tr>
<td>Technology tested on CW machine with larger footprint and power density</td>
<td>Availability</td>
</tr>
<tr>
<td>Good if there is a well done supervisory system</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>None, but if there is the hot plug option it easily overcomes the lack of redundancy</td>
<td>Redundancy</td>
</tr>
<tr>
<td>Standard safety procedure, Standard training</td>
<td>Safety</td>
</tr>
<tr>
<td>>55% claimed. To be checked</td>
<td>Efficiency</td>
</tr>
<tr>
<td>8 months delay for check, test and tendering</td>
<td>Schedule</td>
</tr>
<tr>
<td>To be checked if a single supplier</td>
<td>Production rate</td>
</tr>
</tbody>
</table>

Legend
- **red**: bad
- **green**: good
- **yellow**: adequate
- **orange**: scarce
LHD and Flicker PID control