Flavour Factories
-a personal view-

Lepton Photon Symposium
Toronto, August 6, 2018
Tatsuya Nakada
LPHE/IPHYS/EPFL
Lausanne, Switzerland
What are “factories”?

- Accelerator facilities producing **known Standard Model particles in very large numbers**, built at **well below energy range of the energy frontier machines of that time (and less expensive)**,
What are “factories”?

• Accelerator facilities producing known Standard Model particles in very large numbers, built at well below energy range of the energy frontier machines of that time (and less expensive), e.g.

 – high intensity proton machines with “moderate” energies, producing high intensity secondary pion and kaon beams for fixed target experiments.
What are “factories”?

- Accelerator facilities producing **known Standard Model particles in very large numbers**, built at **well below energy range of the energy frontier machines of that time (and less expensive)**, e.g.
 - high intensity proton machines with “moderate” energies, producing high intensity secondary pion and kaon beams for fixed target experiments.
 - high luminosity e^+e^- colliders at narrow resonance energy regions, such as ϕ, J/ψ and Υ.

T. NAKADA

The 29th International Symposium on Lepton Photon Interactions at High Energies
What are “factories”?

• Accelerator facilities producing known Standard Model particles in very large numbers, built at well below energy range of the energy frontier machines of that time (and less expensive), e.g.

 – high intensity proton machines with “moderate” energy, producing high intensity secondary pion and kaon beams for fixed target experiments.
 – high luminosity e^+e^- colliders at narrow resonance energy regions, such as ϕ, J/ψ and Υ.

• Some energy frontier machines also function as or even become “factories”.
Physics of “factories”

- Physics motivations: making precision measurements for
 - determination of the Standard Model parameters
 - comparison with the Standard Model predictions to search for deviations in rare and forbidden processes
Physics of “factories”

• Physics motivations: making precision measurements for
 – determination of the Standard Model parameters
 – comparison with the Standard Model predictions to search for deviations in rare and forbidden processes

• Expected physics performance can be well predicted, for given accelerator and detector performances.
A lucky example in the past

• B factories (KEKB and PEP II)
 – With all the data available, observed CPV phenomena in the kaon system, described by a single complex parameter, ε_K, were “compatible” with the SM, but could not exclude that CPV was outside of the SM.
 – Large uncertainties for the SM prediction for CPV in $B \rightarrow J/\psi K_S$ decays (little idea on m_t till late 80’s)
A lucky example in the past

Unitarity triangle in early 1990's

- Situation changed with the B-B oscillation frequency measurement: $\Delta m(B) + \varepsilon_K$ reduced the m_t dependence in CPV for $B \rightarrow J/\psi K_S$: $\sin 2\beta \approx 0.4$
A lucky example in the past

- B factories (PEP II and KEKB)
 - With all the data available, observed CPV phenomena in the kaon system, described by a single complex parameter, ε_K, were “compatible” with the SM, but could not exclude that CPV was outside of the SM.
 - Large uncertainties for the SM prediction for CPV in $B \to J/\psi K_S$ decays (little idea on m_t till late 80’s)
 - Situation changed with the B-\bar{B} oscillation frequency measurement: $\Delta m(B) + \varepsilon_K$ reduced the m_t dependence in CPV for $B \to J/\psi K_S$: $\sin^2\beta \approx 0.4$

“If the SM is the origin of CPV, an asymmetric B factory with $L \approx 10^{33}$ cm$^{-2}$s$^{-1}$ CPV in $B \to J/\psi K_S$ should be observed within a few years of data taking.”: **a strong justification!**
A lucky example in the past

Unitarity triangle in early 1990’s

- With all the data available, observed CPV phenomena in the kaon system, described by a single complex parameter, ε_K, were "compatible" with the SM, but could not exclude that CPV is outside of the SM.

- Large uncertainties for the SM prediction for CPV in $B \rightarrow J/\psi K_S$ decays (little idea on m_t till late 80’s)

- Situation changed with the B-B oscillation frequency measurement: $\Delta m(B) + \varepsilon_K$ reduced the m_t dependence in CPV for $B \rightarrow J/\psi K_S$: $\sin^2 \beta \approx 0.4$

"If the SM is the origin of CPV, an asymmetric B factory with $L \approx 10^{33}$ cm$^{-2}$s$^{-1}$ CPV in $B \rightarrow J/\psi K_S$ should be observed within a few years of data taking.": a strong justification!

And now: experiments improved but theory changed a lot as well….

CPV in $J/\psi K_S$ not too different

T. NAKADA 11

The 29th International Symposium on Lepton Photon Interactions at High Energies
Physics of “factories”

• Physics motivations: making precision measurements for
 – determination of the Standard Model parameters
 – comparison with the Standard Model predictions to
 search for deviations in rare and forbidden processes

• Expected physics performance can be well predicted, for given accelerator and detector performances.

• Primary goal is not look for “new particles”.
Factories provide

An alternative approach to experiments at high energy frontier machines: muon as an example
Factories provide

An alternative approach to experiments at high energy frontier machines: muon as an example

- Class-A: undetectably small effect from the known physics,
 - Lepton flavour violating muon decays: $\mu \rightarrow e \gamma$: due to the neutrino oscillation $\Rightarrow Br \sim 10^{-54}$
 - Current limit $Br < 4.2 \times 10^{-13}$ (90% CL) (MEG)
 - plenty of space to discover new physics

Primarily an experimental challenge
An alternative approach to experiments at high energy frontier machines: muon as an example

- Class-A: undetectably small effect from the known physics,
 - Lepton flavour violating muon decays: $\mu \to e\gamma$: due to the neutrino oscillation $\Rightarrow Br \sim 10^{-54}$
 - Current limit $Br < 4.2 \times 10^{-13}$ (90% CL) (MEG)
 - plenty of space to discover new physics

Primarily an experimental challenge

- Class-B: A discrepancy with the SM prediction
 - $\mu(g-2)$ (PDG 017, E821)

$$\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 268(63)(43) \times 10^{-11}$$

Improvements in both theory and experiment needed
Other on going examples

- **Class-A:**
 - Electric dipole moment: n, p, atoms, nuclei, e, μ
 (if seen only for hadron, could be due to strong CPV)
 - Lepton number violating processes in μ (μ→eγ, μ→e)
 - Lepton number and lepton flavour violation in b-, c- and s-hadron decays (intriguing phenomena in B decays)
Other on going examples

• Class-A:
 – Electric dipole moment: n, p, atoms, nuclei, e, μ
 (if seen only for hadron, could be due to strong CPV)
 – Lepton number violating processes in μ (μ→eγ, μ→e)
 – Lepton number and lepton flavour violation in b-, c- and s-hadron decays (intriguing phenomena in B decays)

• Class-B:
 – Deviation from the weak interaction Lorentz structure in semileptonic b-hadron decays (intriguing phenomena in B decays)
 – CP violation in B, D and K meson decays
 – Consistency test of the unitarity triangle
Other on going examples

• Class-A:
 – Electric dipole moment: n, p, atoms, nuclei, e, μ
 (if seen only for hadron, could be due to strong CPV)
 – Lepton number violating processes in μ (μ→eγ, μ→e)
 – Lepton number and lepton flavour violation in b-, c- and s-hadron decays (intriguing phenomena in B decays)

• Class-B:
 – Deviation from the weak interaction Lorentz structure in semileptonic b-hadron decays (intriguing phenomena in B decays)
 – CP violation in B, D and K meson decays
 – Consistency test of the unitarity triangle

Experimental progress makes a migration of A to B
An example of A to B migration

- SM prediction for CPV in the D meson decay amplitudes small: $10^{-3} \sim 10^{-4}$

thought to be the Class-A new physics search
An example of A to B migration

- SM prediction for CPV in the D meson decay amplitudes small: $10^{-3} \sim 10^{-4}$ thought to be the Class-A new physics search

- LHCb observation:

 $$CPV(D^0 \rightarrow K^-K^+) - CPV(D^0 \rightarrow \pi^-\pi^+) = (-1.57 \pm 0.29) \times 10^{-3}$$

"4.3\times10^7 KK
1.7\times10^7 \pi\pi
PRL2019"
An example of A to B migration

- SM prediction for CPV in the D meson decay amplitudes small: $10^{-3} \sim 10^{-4}$
 thought to be the Class-A new physics search

- LHCb observation:
 \[
 \text{CPV}(D^0 \rightarrow K^- K^+) - \text{CPV}(D^0 \rightarrow \pi^- \pi^+) = (-1.57 \pm 0.29) \times 10^{-3}
 \]
 - NB: CPV in $D^0 \rightarrow h^- h^+$ (h=K or \(\pi\))
 \[
 = \text{CPV in } D^0 \leftrightarrow \bar{D}^0 \text{ + in } A_{h^- h^+} + \text{interplay of the two}
 \]
 - from the known properties of $D^0 \leftrightarrow \bar{D}^0$,
 if CPV(KK) \neq CPV(\(\pi\pi\)), then due to CPV in $A_{h^+ h^-}$

\rightarrow LHCb observation is due to CPV in decay amplitudes
An example of A to B migration

- SM prediction for CPV in the D meson decay amplitudes small: $10^{-3} \sim 10^{-4}$ thought to be the Class-A new physics search

- LHCb observation:
 \[\text{CPV}(D^0 \rightarrow K^- K^+) - \text{CPV}(D^0 \rightarrow \pi^- \pi^+) = (-1.57 \pm 0.29) \times 10^{-3} \]
 - NB: CPV in $D^0 \rightarrow h^- h^+$ (h=K or π)
 = CPV in $D^0 \leftrightarrow D^0$ + in $A_{h^- h^+}$ + interplay of the two
 - from the known properties of $D^0 \leftrightarrow D^0$,
 if CPV(KK) \neq CPV(ππ), then due to CPV in $A_{h^+ h^-}$
 \rightarrow LHCb observation is due to CPV in decay amplitudes

- In agreement with the SM predictions:
 now this becomes Class-B search: precisions in both experiments and theory becomes necessary
Present “factories”

- **PSI** p beam: \(\pi, n, \mu \)
- **FNAL** p beam: \(\mu, \nu \)
- **J-PARC** p beam: \(K, \mu, \nu \)
- **SPS (CERN)** p beam: \(K \)

- **VEP2000** \(e^+e^- \)
 \(\rho, \omega, \phi, \ldots \)
- **BEPC** \(e^+e^- \)
 \(D, \tau \)
- **VEP4M** \(e^+e^- \)
- **SuperKEKB** \(e^+e^- \)
 \(B, D, \tau \)
- **DAFNE** \(e^+e^- \)

Accelerator originally constructed as high energy frontier machine

Accelerator constructed as a “factory”

The 29th International Symposium on Lepton Photon Interactions at High Energies
New factories bing discussed

- Super-Tau-Charm factories: \(L \approx 10^{35} \text{ cm}^{-2}\text{s}^{-1} \)
 - BINP (Novosibirsk): approved but construction not funded, R&D
 - High Intensity Electron-Positron Accelerator in China: TDR in preparation, R&D
 (c.f. current BEPC II \(\sim 10^{33} \text{ cm}^{-2}\text{s}^{-1} \). No of D’s not more than LHCb or SuperKEKB but complementary and diversified programme)
New factories bing discussed

• Super-Tau-Charm factories: $L \approx 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
 – BINP (Novosibirsk): approved but construction not funded, R&D
 – High Intensity Electron-Positron Accelerator in China: TDR in preparation, R&D
 (c.f. current BEPC II $\sim 10^{33} \text{ cm}^{-2}\text{s}^{-1}$. No of D’s not more than LHCb or SuperKEKB but complementary and diversified programme)

• e^+e^- Higgs Factories
 – Circular options: CECP (CN), FCC-ee (CERN)
 – Linear options: ILC (JP), CLIC (CERN)
Circular option

- High luminosity
- Also super Z and W factories
- High energy pp collider could be installed later
- Initial cost would be high

Linear option

- Longitudinal beam polarizations
- Statistics for Z and W less than a circular option
- Extension to higher energies possible
- Initial cost would be lower than a circular option

Within the uncertainties of uncertainties, performance in the Higgs coupling measurements are comparable (Class-B case), while for, e.g., rare decays (Class-A case), luminosities do matter.
New factories bing discussed

• Super-Tau-Charm factories: $L \approx 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
 – BINP (Novosibirsk): approved but construction not funded, R&D
 – High Intensity Electron-Positron Accelerator in China: TDR in preparation, R&D
 (c.f. current BEPC II $\sim 10^{33} \text{ cm}^{-2}\text{s}^{-1}$. No of D’s not more than LHCb or SuperKEKB but complementary and diversified programme)

• e^+e^- Higgs Factories
 – Linear options: ILC (JP), CLIC (CERN)
 – Circular options: CECP (CN), FCC-ee (CERN)

No longer with a moderate cost: decision will have a profound impact on the community and field
And don’t forget

- LHC and HL-LHC also a factory: c, b, τ, t, W, Z, H
- There will be upgrades of
 - existing accelerators,
 - BEPC luminosity upgrade (IHEP), PIP-II (FNAL), possible SuperKEKB upgrade (polarization)?,…
 - beam lines
 - PSI new muon beam line (HIMB) for 10^{10} DC μ^+/sec,…
 - and experiments
 - Many plans and ideas …

A cost effective way for the diversity, which is needed now in the field and should be exploited.
Final remarks

• Flavour experiments have been vital for establishing the Standard Model, often providing evidences before direct discovery of new particles by the energy frontier machines. Even giving a hint where to look for…
Final remarks

- Flavour experiments have been vital for establishing the Standard Model, often providing evidences before direct discovery of new particles by the energy frontier machines. Even giving a hint where to look for…

- We should treat “flavour physics” in a much broader sense: hadrons, leptons and bosons together…
Final remarks

• Flavour experiments have been vital for establishing the Standard Model, often providing evidences before direct discovery of new particles by the energy frontier machines. Even giving a hint where to look for…

• We should treat “flavour physics” in a much broader sense: hadrons, leptons and bosons together…

• We have not yet the Standard Model of New Physics. A guidance from “flavour physics” is seriously required and interests in “flavour physics” are rapidly expanding, with many interesting ideas (as seen in this conference).
Final remarks

• Flavour experiments have been vital for establishing the Standard Model, often providing evidences before direct discovery of new particles by the energy frontier machines. Even giving a hint where to look for...

• We should treat “flavour physics” in a much broader sense: hadrons, leptons and bosons together...

• We have not yet the Standard Model of New Physics. A guidance from “flavour physics” is seriously required and interests in “flavour physics” are rapidly expanding, with many interesting ideas (as seen in this conference).

• And we need to support “factories” for those activities.
Since I am the last speaker...

- **Big thanks to the conference organisers**
Since I am the last speaker…

• Big thanks to the conference organisers
• Thanks to the participants, in particular the hardcore ones who stayed till the end
Since I am the last speaker...

- Big thanks to the conference organisers
- Thanks to the participants, in particular the hardcore ones who stayed till the end
- And have a safe trip back home!