Lepton Photon 2019

Searches for supersymmetry at the LHC

Filip Moortgat (CERN)

Introduction

Why is there a dedicated talk (and working group) for SUSY searches at the LHC? (compared to other BSM searches)

Introduction

Supersymmetry is a spacetime symmetry that adds a fermionic partner to each SM boson ("-ino") and a bosonic partner to each SM fermion ("s-")

```
leptons (f)
quarks (f)
gluons (b)

W/Z gauge bosons (b)

Higgs bosons (b)

(f = fermion, b = boson)

sleptons (b)

gluinos (b)

gluinos (b)

gluinos (b)

gluinos (charginos

(\chi_1^0, \chi_2^0, \chi_3^0, \chi_4^0)

(\chi_1^{\pm}, \chi_2^{\pm})
```

SUSY is broken (breaking mechanism determines phenomenology)
Add a discrete symmetry R-parity to avoid rapid proton decay

- → SUSY particles produced in pairs
- → Lightest SUSY particle (LSP) is stable (and excellent DM candidate)

Introduction (2)

- So, why is there a dedicated effort for SUSY searches at the LHC? (compared to other BSM searches)
 - SUSY is unique among all BSM theories for solving many shortcomings of the SM in one go:
 - Hierarchy problem
 - Gauge unification
 - Dark Matter
 - Radiative EWSB
 - •
 - But searches are off course relevant to all other BSM theories that lead to similar topologies (Universal Extra Dimensions, Little Higgs with T-parity, ...)
 - → SUSY is used as a generic benchmark

Hierarchy problem

$$\mu^2 = \mu_{\rm bare}^2 - \frac{1}{16\pi^2} \lambda^2 \Lambda^2$$

$$= -$$
 pinch of salt 9.999999... billion tons of salt 10 billion tons of salt

Gauge Unification

$\alpha_i = g_i^2 / 4\pi$

(1 = electromagnetic, 2 = weak, 3 = strong)

MSSM

- meet in 1 point
- energy scale ok with proton decay

Inclusive versus targeted

Broadly speaking, there are two types of SUSY searches:

1) Inclusive analyses, which are based on topologies (jets, P_T^{miss}, leptons, ...) which are sensitive to broad classes of SUSY (and SUSY-like) signals.

Gluinos, squarks, ...

2) Analyses that are specifically targeted to delicate SUSY signals which merit dedicated analysis efforts

Stop/sbottom
Electroweak produced sparticles

Topological approach

All hadronic	1-lepton	OS 2-lepton	SS 2-lepton	≥ 3-lepton
Jets + MET	Single lepton + jets + MET	Opposite- sign di- lepton + MET	Same sign di-lepton + jets + MET	Multi-lepton

Simplified models

Many SUSY particles and many cascade decays possible

How to simplify?

- add additional theory assumptions (e.g. mSUGRA/CMSSM)
- only consider "simple" decay chains

Paper is 2-dimensional → often only 2 parameters varied

Warning: branching ratios often assumed to be 100% and mass limits often quoted for "best case exclusion" for low mass LSP

Squarks and gluinos: CMS

Classic Jets & MET search

Signal selection:

Binning in H_T, H_T^{miss}, #jets, #b-jets

Main backgrounds:

- ttbar and W + jets where a lepton was lost → predict from single lepton control region in data
- Z → invisible (genuine MET) → predict from gamma + jet and Z → II control region in data
- QCD multijets (mismeasured jets leading to fake MET) → predict from smeared events in data

CMS-SUS-19-005

CMS-SUS-19-006

Squarks and gluinos: ATLAS

NEW

Classic Jets & M_{eff} search

Signal selection:

Multibin search

Binning in m_{eff}, #jets, P_t^{miss} significance

Lepton veto	No baseline electron (muon) with $p_T > 7$ (6) GeV
$E_{\rm T}^{\rm miss}$ [GeV]	> 300
$p_{\mathrm{T}}(j_1)$ [GeV]	> 200
$p_{\mathrm{T}}(j_2)$ [GeV]	> 50
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$ [rad.]	> 0.4
$m_{\rm eff}$ [GeV]	> 800

	MB-SSd	MB-GGd	MB-C
Nj	≥ 2	≥ 4	≥ 2
$p_{\mathrm{T}}(j_{\mathrm{l}})$ [GeV]	> 200	> 200	> 600
$p_{\mathrm{T}}(j_{i=2,,N_{\mathrm{J_{min}}}})$ [GeV]	> 100	> 100	> 50
$ \eta(j_{i=1,,N_{J_{\min}}}) $	< 2.0	< 2.0	< 2.8
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$	> 0.8	> 0.4	> 0.4
$\Delta \phi(j_{i>3}, p_{\mathrm{T}}^{\mathrm{miss}})$ min	> 0.4	> 0.2	> 0.2
Aplanarity	-	> 0.04	-
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}~[{\rm GeV}^{1/2}]$	> 10	> 10	> 10
$m_{\rm eff}[{ m GeV}]$	> 1000	> 1000	> 1600

 m_{eff} = sum of p_T of jets (> 50 GeV) + P_T^{miss}

Also: BDT search and single bin results

Main backgrounds: estimated from Control Regions which are used to normalize and modify the background MC simulation

Systematic uncertainties

To give some feeling for the systematic uncertainties ...

Overall total uncertainty in multibin regions:

Signal systematics:

Item	Relative uncertainty (%)
Trigger efficiency (statistical)	0.2-2.6
Trigger efficiency (systematic)	2.0
Jet quality requirements	1.0
Initial-state radiation	0.0-14
Renormalization and factorization scales μ_R & μ_F	0.0-5.7
Jet energy scale	0.0-14
Jet energy resolution	0.0-10
Statistical uncertainty of simulated samples	1.2-31
$H_{\rm T}$ and $H_{\rm T}^{\rm miss}$ modeling	0.0-11
Pileup modeling	0.0-2.4
Isolated-lepton & isolated-track vetoes	2.0
(T1tttt, T5qqqqVV, and T2tt models)	
Integrated luminosity	2.3-2.5
Total	4.0-33

Dominant experimental uncertainty often JES/JER

ATLAS-CONF-2019-040

CMS-SUS-19-006

Both ATLAS and CMS: MC statistical uncertainty often important

Gluino limits

Mass limits have reached ~2.3 TeV for low LSP masses

Squark limits

Mass limits have reached ~1.2 TeV on individual squarks for low LSP masses and ~ 1.9 TeV for 8-fold degenerate squarks

Squark+gluino limits

Limits on squark-squark + gluino-gluino + squark-gluino production:

Single lepton search

Single lepton search using sum of large-R jet masses (M_{.I})

$$M_J = \sum_{\substack{J_i = \text{large-}R \text{ jets} \\ (R=1.4)}} m(J_i).$$

Signal selection:

Single lepton + P_T^{miss}, S_T, #jets, #b-jets, M_J

Main backgrounds:

1I and 2I ttbar from control regions in M_J and M_T

Same-sign dileptons & more

ATLAS-CONF-2019-015

Same-sign 2l & > 3l search

Signal selection:

_	_		_	-		
SR	n_{ℓ}	n_b	n_j	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	m _{eff} [GeV]	$E_{\rm T}^{\rm miss}/m_{\rm eff}$
Rpv2L	$\geq 2 (\ell^{\pm}\ell^{\pm})$	≥ 0	$\geq 6 (p_{\rm T} > 40 {\rm GeV})$	-	> 2600	_
Rpc2L0b	$\geq 2 (\ell^{\pm}\ell^{\pm})$	= 0	\geq 6 ($p_{\mathrm{T}} > 40\mathrm{GeV}$)	> 200	> 1000	> 0.2
Rpc2L1b	$\geq 2 (\ell^{\pm}\ell^{\pm})$	≥ 1	\geq 6 ($p_{\mathrm{T}} > 40\mathrm{GeV}$)	_	_	> 0.25
Rpc2L2b	$\geq 2 (\ell^{\pm}\ell^{\pm})$	≥ 2	$\geq 6 (p_{\rm T} > 25 {\rm GeV})$	> 300	> 1400	> 0.14
Rpc3LSS1b	$\geq 3 \left(\ell^{\pm}\ell^{\pm}\ell^{\pm}\right)$	≥ 1	no cut but veto 81	$GeV < m_{e^{\pm}e^{\pm}} <$	< 101 GeV	> 0.14

CMS-SUS-19-008

Same-sign 2I & multilepton search

Signal selection:

Binning in H_T, p_T^{miss}, m_T^{min}, #jets, #b-jets

Main backgrounds:

- rare SM backgrounds (ttV, W[±]W[±], WZ)
- background with non-prompt leptons (W+jets, QCD)

Interpretations

ATLAS-CONF-2019-015

Also RPV SUSY limits

Sensitivity up to gluino masses of 1.6 - 2.1 TeV

Dedicated stop searches

Stop single lepton

Classic single lepton stop search

Signal selection:

Binning in H_T, H_T^{miss}, #jets, #b-jets

+ resolved and boosted top-tagging

Main backgrounds:

- ttbar and single top with 1 lost lepton → predicted from dilepton control region in data
- W+jets → taken from 0b control region in data

Limits up to 1.2 TeV for low LSP mass

Difficult regions

Single lepton stop search targeting 3-body decays

Dedicated recurrent neural network:

Stop to taus

Stop search in decays to tau leptons

Signal selection: Binning in H_T, P_T^{miss}, M_{T2}

Main backgrounds:

- ttbar with two genuine taus
- mis-identified taus

$$m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}} = 0.5 \left(m_{\tilde{t}_{1}} - m_{\widetilde{\chi}_{1}^{0}} \right)$$

 $m_{\tilde{t}_{1}} - m_{\widetilde{\chi}_{1}^{0}} = 0.5 \left(m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}} \right)$

Stop to Z

Search for stop decaying to Z-boson (decaying to a lepton pair)

ATLAS-CONF-2019-016

Lepton Photon, Toronto, August 2019

Summary: stop search

Several analyses targeting the difficult compressed regions

High mass: limits up to 1200 GeV

Electroweak SUSY: intro

Direct electroweak production of charginos, neutralinos and sleptons is challenging due to the low cross sections

E.g. $\sigma(500 \text{ GeV slepton}) = 0.5 \text{ fb}$

Decays of charginos and next-tolightest neutralinos can be complex

Bino	Wino	Higgsino
$ ilde{q}_{L,R}$	$ ilde{q}_{L,R}$ ——	$ ilde{q}_{L,R}$
$\tilde{H}_{u,d}$ \longrightarrow $\tilde{\chi}^0_{3,4}/\tilde{\chi}^{\pm}_2$	$\tilde{H}_{u,d}$ \longrightarrow $\tilde{\chi}^0_{3,4}/\tilde{\chi}^{\pm}_2$	\tilde{W} $\tilde{\chi}_4^0/\tilde{\chi}_2^{\pm}$
\tilde{W} $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$	\tilde{B} $ ilde{\chi}^0_2$	\tilde{B} $\tilde{\chi}_3^0$
\tilde{B} $\tilde{\chi}_1^0$	\tilde{W} $\tilde{\chi}_1^0/\tilde{\chi}_1^{\pm}$	$\tilde{H}_{u,d} = \tilde{\chi}_{1,2}^0/\tilde{\chi}_1^{\pm}$

Chargino/neutralino pair production depends on the bino/wino/higgsino composition

Direct slepton pair-production has the lowest cross section

Chargino/neutralino

Chargino/chargino or chargino/neutralino pair production assuming decays to W/Z/h bosons

Also

Chargino decays through light sleptons

ATLAS-CONF-2019-008

Direct slepton pair production

Lepton Photon, Toronto, August 2019

Staus

Stau pair production

Signal selection:

SR-lowMass	SR-highMass			
2 tight τs (OS)	2 medium τ s (OS), \geq 1 tight τ			
asymmetric di-tau trigger	di-tau+ $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger			
$75 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 150~{\rm GeV}$			
tau $p_{\rm T}$ and $E_{\rm T}^{\rm miss}$ cuts described in Section 5				
light lepton veto and 3rd medium τ veto				
<i>b</i> -jet veto				
Z/H veto $(m(\tau_1, \tau_2) > 120 \text{ GeV})$				
$\Delta R(\tau_1, \tau_2) < 3.2$				
$ \Delta\phi(\tau_1,\tau_2) > 0.8$				
$m_{\rm T2} > 70~{\rm GeV}$				

Lepton Photon, Toronto, August 2019

Staus

ATLAS analysis:
Hadronic tau decays only
Full Run 2 dataset

LEP excludes tau sleptons with masses up to 90 GeV (for ΔM>15 GeV). ATLAS excludes masses between 120 and 390 GeV. CMS closes the gap between 90 and 120 GeV. Valid for low LSP masses.

Compressed ewkinos

Soft opposite sign dileptons, with ISR boost

VBF SUSY

Chargino-neutralino production via Vector Boson Fusion (VBF)

Signal selection:

0 or 1 soft lepton + P_T^{miss} VBF selection: Pairs of jets (pT>60 GeV) with $\Delta \eta > 3.6$ and $\eta_1 \eta_2 < 0$ $m_{jj} > 1$ TeV

CMS-SUS-17-007

Lepton Photon, Toronto, August 2019

Long-lived SUSY

Long-lived

Extension of "classic" hadronic MT2 search

Signal selection:

Binning in H_T, M_{T2}, #jets, #b-jets Extra categorization in short (pixel-only), medium (< 7 hits) and long (> 7 hits) tracks

Lepton Photon, Toronto, August 2019

Displaced dilepton vertices

Search for opposite-charge lepton pairs (e-e, mu-mu, e-mu)

700 GeV squarks

1600 GeV squarks

Outlook

Search results with full Run 2 statistics are starting to appear. Many more to come.

CERN is now preparing for Run 3 and the HL-LHC.

Factor 20 in luminosity still to come

(+ energy upgrade to 14 TeV, which means a factor of 2 gain in cross-section for 2.3 TeV gluinos)

We are slightly above half-way (~60%) in the mass reach of the LHC (e.g. stop limit now at 1200 GeV, ultimate reach 2000 GeV)

Note that, while naturalness (i.e. low fine-tuning) prefers light stops (< 700 GeV), a 1.5-2 TeV stop mass is more suitable for producing a 125 GeV Higgs boson through radiative corrections

Extra

ISR+tau

ISR + tau + MET

CMS-SUS-19-002

