Rare decays of B hadrons

Carla Marin

on behalf of the LHCb collaboration with results from Belle

5-10 August, Toronto Canada

Why rare B decays?

- FCNC sensitive to indirect effects of New Physics (NP) in loops
 - o branching fractions, angular distributions, etc.
- Access to much larger scales than direct searches

Intriguing deviations in rare B decays

Differential BR and angular distributions

Lepton Flavour Universality (LFU) tests

Effective Hamiltonian

Model independent description in effective field theory [Buchalla et al.]:

$$H_{eff} \propto V_{tb}V_{ts}^* \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i'\right)$$

Complete basis of 4-body operators contributing to different final states:

$$egin{aligned} O_7^{(')} & \propto (ar{s} \sigma_{\mu
u} P_{R(L)} b) F^{\mu
u} \ O_9^{(')} & \propto (ar{s} \gamma_{\mu} P_{L(R)} b) (ar{l} \gamma_{\mu} l) \ O_{10}^{(')} & \propto (ar{s} \gamma_{\mu} P_{L(R)} b) (ar{l} \gamma_{\mu} \gamma_5 l) \ O_S^{(')} & \propto (ar{s} P_{L(R)} b) (ar{l} l) \ O_P^{(')} & \propto (ar{s} P_{L(R)} b) (ar{l} \gamma_5 l) \end{aligned}$$

Transition	$C_7^{(')}$	$C_9^{(')}$	$C_{10}^{(')}$	$C_{S,P}^{(\prime)}$
$b\! o s\gamma$	X			
$b \rightarrow \ell^+ \ell^-$			X	X
$b\! o s\ell^+\ell^-$	X	X	X	

Radiative decays

Sensitive to <u>right-handed currents</u> through photon polarisation

$$lpha_{\gamma} = rac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)}$$

at leading order (LO) in the SM:

$$lpha_{\gamma}^{LO} = rac{|C_7|^2 - |C_7'|^2}{|C_7|^2 + |C_7'|^2}$$

5

arXiv:1905.06284

Photon polarization in $B_s \to \phi \gamma$

Time dependent decay rate for f_{CP} states gives access to photon polarization:

$$\Gamma(t) \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_{(s)}}{2}\right) - \mathcal{A}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{(s)}}{2}\right) \pm \mathcal{C}_{CP} \cos\left(\Delta m_{(s)} t\right) \mp \mathcal{S}_{CP} \sin\left(\Delta m_{(s)} t\right) \right]$$

$${\cal A}_{\phi\gamma}^{\Delta} = -0.98^{+0.46}_{-0.52}{}^{+0.23}_{-0.20}$$

PRL 118(2017)2,021801

$${\cal A}_{\phi\gamma}^{\Delta} \simeq rac{{
m Re}(e^{-i\phi_s}C_7\,C_7')}{|C_7|^2 + |C_7'|^2} \quad S_{\phi\gamma} \simeq rac{{
m Im}(e^{-i\phi_s}C_7\,C_7')}{|C_7|^2 + |C_7'|^2}$$

Require knowledge of the B_s flavour at production

NEW this year 3 fb⁻¹ LHCb data

Photon polarization in $B_s \to \phi \gamma$

• Fit time-dependent decay rate in $B_s \rightarrow \varphi \gamma$ using B tagging information:

Compatible with SM and previous result for A[∆]

$$S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11 \ C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11 \ \Delta^{\Delta}$$

 ${\cal A}_{_{\sigma lpha}}^{\Delta} = -0.67^{\,+0.37}_{\,-0.41} \pm 0.17$

First measurement in B_s system

First observation of $\Lambda_b \to \Lambda^0 \gamma$

Baryonic b \rightarrow sy not yet observed BR < 1.9·10⁻³ [CDF PhysRevD.66.112002]

 $BR_{SM} \in [0.06, 1]x10^{-5}$ [Wang et al., Mannel et al., Gan et al., Faustov et al.]

Gives access to photon polarisation
[Mannel & Recksiegel, Hiller & Kagan]

Very challenging reconstruction → dedicated reconstruction in Run 2

Huge combinatorial background mitigated with performant MVA

First observation of $\Lambda_b \to \Lambda^0 \gamma$

LHCb 2016 data (1.7 fb⁻¹)

Significance of 5.6o First observation!

Opens doors to photon polarisation measurement

$$\mathcal{B}(\Lambda_b^0 o\Lambda\gamma)=(7.1\pm1.5\pm0.6\pm0.7) imes10^{-6}$$

Semileptonic penguin decays

Full angular analysis of $\Lambda_b^0 \rightarrow \Lambda \mu^{\dagger} \mu^{\dagger}$

Richer angular distribution than meson decays

Method of moments [JHEP 11 (2017) 138]

→ full set of angular observables

$$rac{d^5\Gamma}{d\Omega} = rac{3}{32\pi^2} \sum_i^{34} K_i f_i(\Omega)$$

LHCb 2011-2016 data (5 fb⁻¹)

$b \rightarrow sll$ with electrons

Theoretically, same behaviour as for muons → LFU tests

A challenge at LHCb:

PRL 122 (2019) 191801

Much more similar to muons at Belle:

arXiv:1904.02440

$b \rightarrow sll$ with electrons at LHCb

Hardware trigger

Larger ECAL occupancy → tighter thresholds for electrons:

- e $p_{T} > 2700/2400$ MeV in 2012/2016
- $\mu p_{\tau} > 1700/1800 \text{ MeV in } 2012/2016$

[LHCb-PUB-2014-046, 2019 | INST 14 P04013]

Mitigate including hadron trigger and events triggered independently of the signal (TIS)

Interaction with detector material

Electrons radiate much more Bremsstrahlung

Recovery procedure in place

- miss some photons and add fake ones
- ECAL resolution worse than tracking
- \rightarrow worse mass resolution for electron mode⁵³

How do we measure LFU?

In the SM:

$$R_H=rac{BR(B
ightarrow H\mu^+\mu^-)}{BR(B
ightarrow He^+e^-)}=1$$

Experimentally:

$$R_H = \left[rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H e^+ e^-)} imes \left[rac{\epsilon(B
ightarrow H e^+ e^-)}{\epsilon(B
ightarrow H \mu^+ \mu^-)}
ight]$$

from mass fit

from MC and calibration samples

Exploit the well tested LFU in J/ ψ modes

$$r_{J/\psi}=rac{BR(B
ightarrow HJ/\psi(\mu^+\mu^-))}{BR(B
ightarrow HJ/\psi(e^+e^-))}=1$$

- as stringent cross-check
- to build double ratio at LHCb → cancel systematic effects

$$R_H = rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H J / \psi(\mu^+ \mu^-))}}{N(B
ightarrow H e^+ e^-)} imes rac{\epsilon (B
ightarrow H e^+ e^-)}{\epsilon (B
ightarrow H J / \psi(e^+ e^-))}}{N(B
ightarrow H J / \psi(e^+ e^-))} imes rac{\epsilon (B
ightarrow H e^+ e^-)}{\epsilon (B
ightarrow H J / \psi(\mu^+ \mu^-))}$$

Updated R_K from **LHCb**

Re-optimised analysis of 2011-2016 data (5 fb⁻¹) in $1.1 < q^2 < 6.0 \text{ GeV}^2$

• $r_{J/\psi}$ cross-check:

If deviations assumed to be genuine \rightarrow 0.1% on $R_{\mbox{\tiny K}}$

$$r_{J/\psi} = 1.014 \pm 0.035$$

Updated R_K **from LHCb**

Factor 2 larger yields than in previous analysis still statistically dominated by electron mode

$$R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$$

compatible with previous analysis and ~2.5σ from SM

Still x2 B decays recorded by LHCb to be analysed!

Updated R_{K*} from Belle

New measurement from Belle using full data-set

- charged R_{K*+} measured for the first time
- K* reconstructed from $K^+\pi^-$, $K_s\pi^+$ and $K^+\pi^0$

 R_{κ^*} measured as single ratio but stringent cross-checks performed:

- measurement of BR(B \rightarrow K* J/ ψ): compatible with world average
- $r_{J/\psi}$ test:

$$r_{J/\psi} = 1.015 \pm 0.025 \pm 0.038$$

Validates efficiency determination

Updated R_{K*} from Belle

Main backgrounds: combinatorial, misidentification, charmonium and peaking

Measure charged and neutral modes separately and weighted average in various q² bins:

Results compatible with SM and LHCb measurement

Updated R_K from Belle

Updated measurement with full Belle data sample

• 3D fit in $M_{bc'}$ ΔE and classifier output (O')

Updated R_K from Belle

Measure charged and neutral modes separately and weighted average in q^2 regions: [0.1, 4.0], [4.0, 8.12], > 14.18, [1.0, 6.0], > 0.1

Updated R_K from Belle

Measure charged and neutral modes separately and weighted average in q^2 regions: [0.1, 4.0], [4.0, 8.12], > 14.18, [1.0, 6.0], > 0.1

Lepton Flavour Violation searches

LFUV → LFV?

See talks by <u>J. Hisano</u>, <u>F. Archili</u>, <u>M. Blanke</u>

Search for $B_{(s)} \rightarrow T^{\pm} \mu^{\mp}$ at LHCb

Forbidden in the SM, BR up to 10⁻⁴ in NP scenarios

 $B(B^0\!\!\to \tau^{\!\pm}\mu^{\!\scriptscriptstyle \mp}) < 2.2\times 10^{-5}$ at 90% CL by BaBar No limit for $B_{_{S}}$ mode

Search using Run 1 LHCb data (3 fb⁻¹) and hadronic tau decay $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ with kinematic constraints

 $B^0 \rightarrow D^-(\rightarrow K^+\pi^-\pi^-)\pi^+$ used as normalisation and same-sign data as background proxy

No signal excess observed. At 90% CL:

$$egin{aligned} BR(B^0 o au^\pm \mu^\mp) &< 1.2 imes 10^{-5} \ BR(B_s o au^\pm \mu^\mp) &< 3.4 imes 10^{-5} \end{aligned}$$

Search for $B^+ \rightarrow K^+ \mu^{\pm} e^{\mp}$ at LHCb

Forbidden in the SM, BR up to 10⁻⁸ in NP scenarios

B(B⁺
$$\rightarrow$$
K⁺ μ -e⁺) < 9.1×10⁻⁸ at 90% CL and B(B⁺ \rightarrow K⁺ μ +e⁻) < 13 ×10⁻⁸ at 90% CL by BaBar

Search using Run 1 LHCb data (3 fb⁻¹) and $B^0 \rightarrow J/\psi K^+$ as normalisation and control mode

Exploit μ triggers, e brem recovery and 2-stage BDT

No signal excess observed, BR limits:

$\mathcal{B}/10^{-9}$	90% C. L.	95% C. L.
$B^+ \rightarrow K^+ \mu^- e^+$	7.0	9.5
$B^+ \rightarrow K^+ \mu^+ e^-$	7.1	9.1

LHCb preliminary

On to the future

Belle II

LHCb upgrade(s)

Strong constraints on NP in $C_{9,10}$ from $b \rightarrow sll$ and on RH currents from $b \rightarrow s\gamma$

Observables	Belle $0.71 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.2%
${ m Br}(B o X_s\gamma)_{ m inc}^{ m had-tag}$	13%	4.2%
${ m Br}(B o X_s\gamma)_{ m sum ext{-}of ext{-}ex}$	10.5%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\mathrm{inc}}^{\mathrm{had\text{-}tag}}$	9.0%	0.85%
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.19%

Constraints from LFU observables with 50 fb⁻¹ (dashed) and 500 fb⁻¹ (filled)

γ polarisation	U1 (50 fb ⁻¹)	U2 (300 fb ⁻¹)	
$B_{_{S}} \to \phi \gamma$	0.07	0.02	
$V^p \rightarrow V^0 \Lambda$	10%	4% 2	6

Summary & conclusions

Rare decays provide stringent tests of NP at large scales

- Interesting tensions in $b \rightarrow sll$ transitions could be a hint of NP
- Latest results with better precision cannot confirm neither deny them
- Updates with more data and new modes under development
- Crucial to test predictions of potential NP models → LFV
- Complementary constraints on right handed currents from b → sy

Not covered here:

- results from Atlas and CMS ($B_{(s)} \rightarrow \mu^{+}\mu^{-}$): see talk by <u>F. Archili</u>
- interpretation of results in terms of NP models: see talk by M. Blanke

BACK-UP

New Physics constraints from b→sγ

Paul & Straub [JHEP04(2017)027]

Isospin (Δ_{0-}) and CP (A_{CP}) asymmetry in B \longrightarrow $X_{s}\gamma$

- Full Belle data
- Inclusive = sum of exclusive

$$\Delta_{0-} = [-0.48 \pm 1.49 \pm 0.97 \pm 1.15]\%$$
 $\frac{\mathcal{B}_{\mathrm{RP}}^{78}}{\mathcal{B}} \simeq (+0.16 \pm 0.50 \pm 0.32 \pm 0.38 \pm 0.05)\%$

Photon polarization in $B^0 \rightarrow K_s \eta \gamma$

• Full Belle data, $m(K_{\varsigma}\eta) < 2.1 \text{ GeV/c}^2$, inclusive tagging

$$S_{K_S\eta\gamma} = -1.32 \pm 0.77 \pm 0.36 \ {\cal A}_{K_S\eta\gamma} = -0.48 \pm 0.41 \pm 0.07$$

arXiv:1908.01848

Isospin asymmetry in B → Kll from Belle

