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It all begins with the search for proton decay

DB ≠ 0 needed to explain present day matter-antimatter asymmetry  
Grand Unified Theories (GUT) first proposed in the late 1970’s 
• SU(5) predicts proton decay with lifetime ~1028 – 1032 years

• Corresponds to O(10) ~ O(100k) events /kton/year 

• Flagship modes p à e+p0 , pà nK+

• Experiments built to test this prediction in the early 1980’s



3

IMB( 3300 tons) 

Kamiokande (1000 tons) Research Objective

… to verify grand unification theories by direct 
direction of their predicted nucleon decay 
phenomena…

September 1981

…experimentally search for the existence, or lack
thereof, of neutrino oscillation phenomena …

~ 0.5 events / kton / day 

Proton Decay Experiments from the 1980’s Kamiokande Proposal
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IMB (3300 tons) 

Kamiokande (1000 tons)

Phys. Rev. Lett. 66, 2561 (1991)
Phys. Rev. D 46, 3720  (1992)

n No observation of proton decay (in any 
experiments), ruling out SU(5)  
n tp à (e+p0) > 2.6 � 1032 years (90% C.L.)

n However, both Kamiokande and IMB observed hint 
of data/MC discrepancy 

Atmospheric Neutrino Measurements



Atmospheric Neutrinos 
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n Neutrino energy, direction, timing, flavor, CP sign are 
not known a priori, must be determined from 
interaction products   

n Neutrinos are produced by the interactions of protons 
with nuclei in the atmosphere

n Isotropic about the earth, producing neutrinos of 
MeV~PeV+ energies

n Path Lengths of 10 ~ 13,000 km  



n At low energies
n Muon-to-electron neutrino ratio is ~ 2:1
n Neutrino-to-antineutrino ratios are ~ 1:1 

Atmospheric Neutrino Flux 
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Super-Kamiokande (50,000 tons)
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Super-Kamiokande (50,000 tons)
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Atmospheric Mixing Measurements

n Atmospheric neutrino oscillation parameter measurements are now dominated 
by results from accelerator neutrino experiments (c.f. M. Messier 2019.08.09 ) 

n What is left for atmospheric neutrinos ? 
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n There Flavor Oscillations 
n Mass Hierarchy  
n CP Violation 

n Cross Section Measurements 
n NC Elastic 
n Tau production 
n Neutrino Absorption in the Earth
n Inelasticity at high energies

n Exotic Oscillations
n Sterile Neutrinos 
n Non-standard Interactions
n Lorentz Violation

AHEP Volume 2016, Article ID 2162659

n Atmospheric neutrinos are still the 
dominant background for PDK, SN relic 
neutrinos, dark matter, astrophysical 
neutrinos… 

arxiv/1907.06714, c.f. J.Kiryluk 2019.08.09

The Program



Current Experiments and Recent Results : 
Atmospheric Neutrinos  

Super-Kamiokande IceCube DeepCore Antares

Super-K IC / DeepCore Antares

Threshold 5 MeV 5 GeV 20 GeV 

Size 50 kton 1 km3  0.02 km3

PID CC ne / nm e-like / µ-like Cascade / Track Shower / Track
Operational 1996 ~ 2009 ~ 2008 ~ 

n N.B.  All are Cherenkov detectors, none can discriminate neutrinos from 
antineutrinos on an even-by-event basis  
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Oscillation Hamiltonians : PMNS

Atmospheric 

Mass Ordering is Unknown

Dm2
32 > 0 Dm2

32  < 0

Solar Reactor, LBL

CP Violation? 

Local number of 
electrons
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PMNS Oscillations: Normal Ordering 
arXiv:1902.07771v1

n Size of 2~10 GeV resonance depends on MH, q13, q23, and dCP (in order of strength)
n No PMNS oscillations above ~50 GeV for any neutrino pathlength  

O(100) 
km

13,000 km
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arXiv:1902.07771v1

PMNS Oscillations: Inverted Ordering CC nt threshold

O(100) 
km

13,000 km

n Size of 2~10 GeV resonance depends on MH, q13, q23, and dCP (in order of strength)
n No PMNS oscillations above ~50 GeV for any neutrino pathlength  



Hierarchy and dcp: Super-K (only)

n Atmospheric mixing angles consistent with other experiments, weak preference for 
sin2q23 > 0.5 (< 1s) 
n Dm2

32 = 2.5+0.13
-0.20�10-3 eV2

n sin2q23 = 0.588+0.031
-0.064

n Normal hierarchy preference: CLs 82.9-96.7% (91.9-94.4% with T2K constraint)
n dcp ~1.33p
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arXiv:1902.07771v1

Hierarchy : IceCube DeepCore

Simulation

Data, Preliminary 

n Complementary search for the MH using 
both track-like and cascade-like events, 
higher energy threshold 

n 3 years of DeepCore Data, 43,000 Events

n Search for zenith angle- and energy-
dependent distortion consistent with MH  

n Expected sensitivity: 
n 0.5~0.6s at sin2q23 = 0.5 

n Weak preference for the normal hierarchy 
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PHYS. REV. D 99, 032007 (2019)

Search for Tau Neutrinos 

n No nt in atmospheric flux below 100 TeV

n Search for evidence of oscillation-induced 
tau interactions 

n Appear as increase in number of cascade-
like events (hadronic decay) or track-like 
(leptonic decay) 

n Use BDTs to extract signal, incurs large 
backgrounds, constrained by zenith and 
energy distributions 

n IceCube finds 3.2s significance for 
appearance of tau events (CC+NC) 

n Complementary to other recent searches
n 6.1s from Opera ( acc. 2018)
n 4.6s from Super-K ( atm. 2018)
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JHEP06(2019)113
Sterile Neutrino Search: Antares

n Add an additional mass state for a neutrino with 
no weak interactions and expand mixing matrix 
accordingly 
n Assume Dm2

32 is dominant

n Track-like events from 20~100 GeV
n Result is compatible with pure PMNS mixing, 

though best fit weakly favors a sterile component   
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Lorentz Violating Oscillations 

=

n Effects are expected to increase with energy and 
path length

n Include Lorentz-violating terms for isotropic LV field based on effective field theory 
(Standard Model Extension)  

n Assume LV terms are small enough to induce limited nµàne transitions, then at high 
energy 

Example for d=4 

Recall , PMNS ~ L/E 
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Nature Physics VOL 14 (2018) 961
Lorentz Violating Oscillations 

n Effects are expected to increase with energy and path length, ideal for IceCube
n Significantly improve constraints on d=3 through d=8 LV coefficients,

n For d=3,4 up to order of magnitude more stringent than previous results
n New oscillation-based limits for higher dimension operators 
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High Energy Neutrino Interaction Cross Section
NATURE 551 (2017)

n At TeV energies the Earth becomes increasingly opaque to neutrinos
n Observable as a depletion in the upward-going neutrino rate 

n Interaction cross section is proportional to neutrino energy at low energies 
n For momentum transfer comparable to the weak boson mass, increase with energy 

slows
n BSM physics can enhance and supplement the cross section  

J. High Energy Phys. 2009, 111 (2009)
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NATURE 551 (2017)

n Analysis uses 10,784 upward-going muons from IceCube-79 data

n No indication of deviation from SM 
n First measurement about 370 GeV, extensible to higher energies with next-generation 

detectors 

High Energy Neutrino Interaction Cross Section

! = 1.30'(.)*+(.,)(./0/)'(.23+(.3*(syst.) sSM



Current Experiments and Recent Results : 
Proton Decay 

n Observation of proton decay would be a clear indication of GUTs 
n Measuring the branching fractions of different decay modes will constrain the 

particular model 



Super-Kamiokande KamLAND

Super-K KamLAND
Threshold 5 MeV 1 MeV

Size 50 kton 1 kton
Operational 1996 ~ 2001~ 

n N.B. Thresholds are too high at neutrino telescopes for proton decay 

Current Experiments and Recent Results : 
Proton Decay 
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Free 
Bound 

Proton Decay into e+p0

n Back-to-back signal topology with all final state particles visible 
n Fully reconstruct initial proton kinematics à powerful background discrimination

tp > 1.9 � 1034 years  No Candidates

Preliminary 

365 kton-yr exposure
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Proton Decay into nK+

n Two body decay:  K+ momentum is 340 MeV/c  
n Cherenkov threshold is 560 MeV/c  , impossible to reconstruct 

initial proton state 
n Tag K+ decay products instead:
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Proton Decay into nK+

n Two body decay:  K+ momentum is 340 MeV/c  
n Cherenkov threshold is 560 MeV/c  , impossible to reconstruct 

initial proton state 
n Tag K+ decay products instead:
n (B.R. 64%) à nµ µ+ (236 MeV/c)  with 6 MeV photon (40%) 

from nuclear de-excitation

Cyan – 6 MeV  g Hits
Green – 231 MeV µ 

n Signal efficiency: 9.1 � 0.1 %
n Background: 1.5 � 0.3 ev/Mton-yr
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Proton Decay into nK+

n Two body decay:  K+ momentum is 340 MeV/c  
n Cherenkov threshold is 560 MeV/c  , impossible to reconstruct 

initial proton state 
n Tag K+ decay products instead:
n (B.R. 21%) à p0p+ (205 MeV/c)

n Charged pion only barely above threshold 
(147 MeV/c) 

n Efficiency: 10.0 � 0.1 %
n Background: 2.0 � 0.3 ev/Mton-yr

p+

p0 àgg
tp > 0.8 � 1034 years  No Candidates

Preliminary 

365 kton-yr exposure
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Search for pànK+ : KamLAND

n Scintillation light from K+ visible (KE 105 MeV), 
limited uncertainty from modeling of nuclear 
deexcitation 

n Scintillator time constant of the same order as the 
Kaon lifetimes O(10)ns, discriminating waveforms 
of primary (K+) and its daughters (µ+, p+p0) a 
challenge

arXiv:1507.05612

PRD92 (2015) 5, 052006
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Search for pànK+ : KamLAND

n Signal efficiency of 44.4 � 5.3%
n Background rate: 101 � 22 / Mton-yr
n No candidates found in 8.97 kton-yr exposure

tp > 5.4 � 1032 years  No Candidates

n KamLAND is the first experiment to demonstrate this technique 
with a large volume liquid scintillator (913 tons) 

PRD92 (2015) no.5, 052006
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PRD 96, 012003 (2017) PRL 115, 121803 (2015) PRL 113, 121802 (2014)
Many Modes, Searches, and Null Results 

Preliminary (2019) 

n�nbar oscillation

PRD 91, 072006 (2015)



Future : Proton Decay 

n Hyper-Kamiokande – Water Cherenkov (2026~ ) 
n 190 kt Fiducial Volume (8.6 times Super-K) 
n 40% photocathode coverage with 2x photon yield of SK

n DUNE – Liquid Argon TPC  (2025~ )
n 40 kt Volume
n Low KE Tracking thresholds
n Exquisite particle tracking à highly efficient PDK 

n JUNO  – Liquid Scintillator (2021~ )
n 20 kt Volume (20 times KamLAND) 
n 0.2 MeV threshold 
n 3% energy resolution

(Related A.Weber 2019.08.07)

(Related:  M. Hartz 2019.08.07)

(Related S. Chen 2019.08.09)



Future : Proton Decay e+p0

Hyper-K DUNE

Efficiency (%) 18.7 / 19.4  45
BKG (Mton-yr)-1 0.06 / 0.62 1.0 

n Expect to reach 1035 years with Hyper-K
n Current limit is 1.9x1034 years 



Future : Proton Decay  nK+

Hyper-K DUNE JUNO
Efficiency (%) 12.2 / 10.8  97 65

BKG (Mton-yr)-1 0.9 / 0.7 1.0 2.5

n Discovery reaches into 1034 years for all technologies, 
dominated by DUNE

n DUNE may also improve modes with many pions (eg. n-n)  



Future : Atmospheric Neutrinos

n Generically expect improved precision on measurements presented above 
n Other projects: INO-ICAL, Baikal-GVD, DUNE 

IceCube Gen2 K. Clark TAUP2017

IceCube Gen2 – 10 km3Hyper-Kamiokande KM3NeT – 1km3



Future : Earth Tomography with Atmospheric Neutrinos
Nature Scientific Reports volume 5, 15225 (2015)

n Core-crossing atmospheric neutrinos can probe electron density of the core via its 
impact on their oscillations 

n High-statistics observations can be used to determine the electron content of the Earth

n Important in geophysics for understanding the origin of the Earth’s magnetic field 
n Cannot be done by other means at present and is currently completely unmeasured

NATURE PHYSICS 15(2019) 37–40Example of tomographical studies with public data here :
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Summary :
n Efforts to understand proton decay background opened the neutrino oscillation frontier

n Now atmospheric neutrinos are being used to probe a variety of effects
n Weak preference for the normal mass hierarchy seen in SK and IceCube, as well as nt
n No evidence of exotic physics (LV, Sterile Neutrinos)
n Highest energy atmospheric neutrinos have been used study interaction cross section 

n Expect further sensitivity improvements at next generation facilities 

n Despite a plethora predictions and accompanying searches for proton decay, no evidence so 
far

n Limits on flagship modes:  p à e+p0 > 1.9�1034 years and p à nK+ > 0.8�1034 years 

n Discovery prospects at next-generation experiments are good, supported by proof-of-
principle measurements at current facilities 



Supplements



Mass Hierarchy Sensitivity After 10 Years (186 kton)  

n Mass hierarchy sensitivity >2 s
n >3s depending upon hierarchy and true value of sin2q23

n Octant discrimination >3s  if |q23 – 45 | > 4 degrees 
n Error bands denote uncertainty from dCP
n Precison on dCP limited by uncertainties

Normal Hierarchy 
Inverted Hierarchy 

Atmospheric n Only

Current Allowed Range
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Mass Hierarchy At Future Detectors : Atmospheric n Only 
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PHYS. REV. D 97, 072009 (2018)

Non-Standard Interactions with Matter 
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PHYS. REV. D 99, 032005 (2019)

NC Quasi-Elastic Scattering With Atmospheric Neutrinos



Atmospheric Neutrino Flux: 

Super-Kamiokande

IceCube/DeepCore
45

PHYSICAL REVIEW D 94, 052001 (2016)
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PHYS. REV. D 99, 032007 (2019)

Tau Neutrino Appearance at IceCube
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PHYS. REV. D 99, 032007 (2019)

Atmospheric Oscillations at IceCube
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PHYS. REV. D 99, 032007 (2019)

Search for Tau Neutrinos 
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Summary of Nucleon Decay Limits (2017) 
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Summary of Nucleon Decay Limits (2017) 
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E. Kearns BLV2017


