ATLAS Muon Trigger performance

Yohei Noguchi, Kyoto University on behalf of the ATLAS collaboration Lepton Photon 2019 2019 August Toronto, Canada

FE

The ATLAS detector has two components for tracking: Muon Spectrometer with a toroid magnet system of 1-1.5 T and Inner Detector (ID) with a 2 T solenoid magnet [1].

Level 1 (L1) muon trigger:

- Employs Thin Gap Chambers (TGCs) and Resistive Plate Chambers (RPCs) with fast response.
- Selection based on coarse p_T determination.
- Trigger logic implemented on dedicated hardware (FPGAs).

Muon High Level Trigger (HLT):

- · Software based algorithm searching for muons in a region defined by L1.
- Precise tracking with Monitored Drift Tubes (MDTs), Cathode Strip Chambers (CSCs), and ID.
- Combination of fast and precise algorithms to reduce trigger rates at every step.
- The isolation criteria to reject non-prompt muons.

Improvements during Run 2

Improvements in L1 and HLT are introduced during Run 2 to keep the trigger rate acceptable while maintaining the efficiency as high as possible.

Muon trigger covers

with wide ranges of

 $|\eta| < 2.4.$

transverse momentum

from production of Higgs

bosons to physics

including B-hadrons.

Coincidence with Inner TGCs

- "Fake" L1 triggers by charged particles from the beam pipe.
- η range: 1.05<lηl<1.9.
- The rate reduction of ~20 % was achieved [2].

Measurement Efficien

Methods for trigger efficiency measurement

- "Tag & Probe" method using $Z \rightarrow \mu \mu$ event.
- It requires "tag" muons in events.
- A bias on the measured efficiency due to the trigger itself used to record the events is avoided.

Performance [2]

L1 efficiency is about 70%

Γ	performance
Ē	\mathbf{ATLAS} Preliminary $\sqrt{s}=13$ TeV, Data 2018, 4.5 fb ⁻¹
	⁻ Z → μμ - - m ^μ l < 1.05 -
1	
0.5	
0	L1 MU20 HLT mu26_ivarmedium or mu50 HLT mu26_ivarmedium or mu50 with respect to L1
0	0 20 40 60 80 10
	offline muon p _T [GeV]
	- ATLAS Preliminary $\sqrt{s}=13$ TeV, Data 2018, 4.5 fb ⁻¹
	$^{-2} \rightarrow \mu\mu$
1	╴┉ [┲] ╋┉┉ _┺ ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ ┉┉ _╹ ┿╊╻╻╹╄╊╻ ╴ ╴

Coincidence with Tile-calorimeter

- Suppress the fake triggers in 1.05<lηl<1.3.
- The rate reduction of ~6% was achieved [2].

Improvement of p_T measurement

- CSCs are included in the fast p_T determination algorithm of HLT.
- Improvement of p_T measurement in the forward region ($|\eta|>2.0$) [2].

Optimization of isolation criteria

- Use tracks within dz < 2 mm.
- Good efficiency in the high pileup environment.

$(|\eta| < 1.05)$, and 90 % $(|\eta| > 1.05)_{0.5}$ due to the coverage of the trigger chambers. • HLT efficiency is ~100 %

Stable at high pile-up.

Upgrades towards Run 3

Efficiency

- Higher luminosity in Run3 (L=2.0×10³⁴ cm⁻²s⁻¹).
- New trigger hardware for L1:
 - Higher granularity detectors, New Small Wheels (NSW) (1.3<lnl<2.7) and new RPC $(1.0 < |\eta| < 1.3)$ in the inner most layer of Muon spectrometer.
 - Coincidence with the outer layer of the TGCs.
 - Upgrade of trigger boards and trigger logic.
- Making use of multi-threading in the HLT.

Expected n distribution of the Run3 Muon Trigger [3]

Reference

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider [2] L1 Muon Trigger Public Results (https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1MuonTriggerPublicResults) [3] Muon Trigger Public Results (https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults)

