
Performance of the ATLAS tau-lepton trigger at the LHC in Run 2 Eleni Myrto Asimakopoulou On behalf of the ATLAS Collaboration

Taus - An Introduction

 3^{rd} generation lepton | 1777 MeV/c^2 | $c\tau = 87 \mu m$

Decays: \sim 35% leptonically ($\ell, \nu_{\ell}, \nu_{\tau}, \ell = e, \mu$) \sim 65% hadronically (π^0, π^-, π^+) $\rightarrow \tau_{had-vis}$

Detector signatures on:

 \hookrightarrow Calorimeters and Inner Tracker.

Possible contamination from hadronic jets.

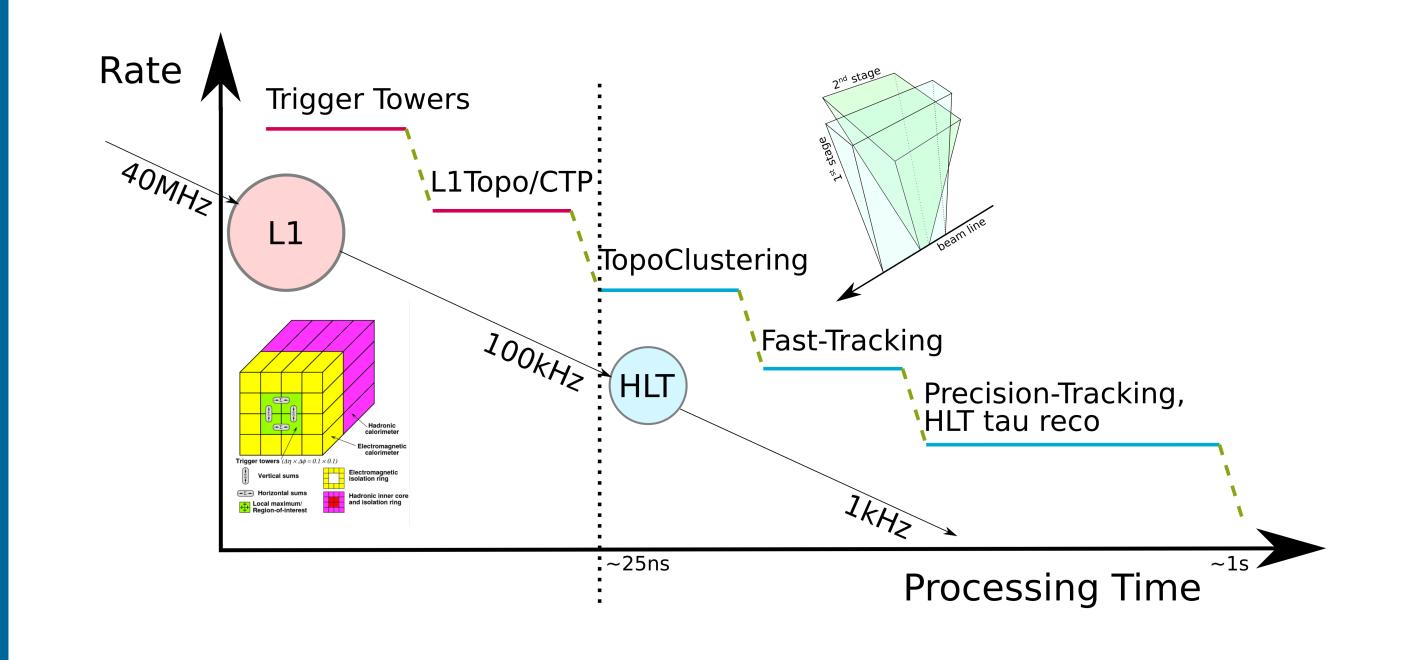
Trigger definition for data acquisition

Level-1 (*L1*): Hardware trigger High Level Trigger (*HLT*): Software trigger

 $L1 \rightarrow build Regions of Interest (Rols)$

L1Calo \rightarrow def Rols

L1Topo \rightarrow perform $|\Delta R|$ cuts to


 $HLT \rightarrow apply algorithms on Rols$

Topo-Clustering: clusters from Rols

Boosted Decision Trees and * based on: **Recurrent Neural Networks**

 \hookrightarrow *Core:* EM 2×1, HAD 2×2 \rightarrow *Isolation:* EM 4×4 - 2×2

remove overlapping Rols, (used for combined triggers)

- - \rightarrow local hadronic calibration \rightarrow "jet seed" ($\tau_{had-vis}$)
- Fast Track Finding (FTF 2 stages) → track reconstruction
 - (lead track:[†]) $|\Delta R| < 0.1$ around $\tau_{had-vis}$, |z| < 225 mm
 - \rightarrow (add. tracks:) $|\Delta R| < 0.4$ around $\tau_{had-vis}$, |z| < 7 mm

inefficiency if the 1st-stage track sel. is wrong \Rightarrow studies on using BDT for the sel.

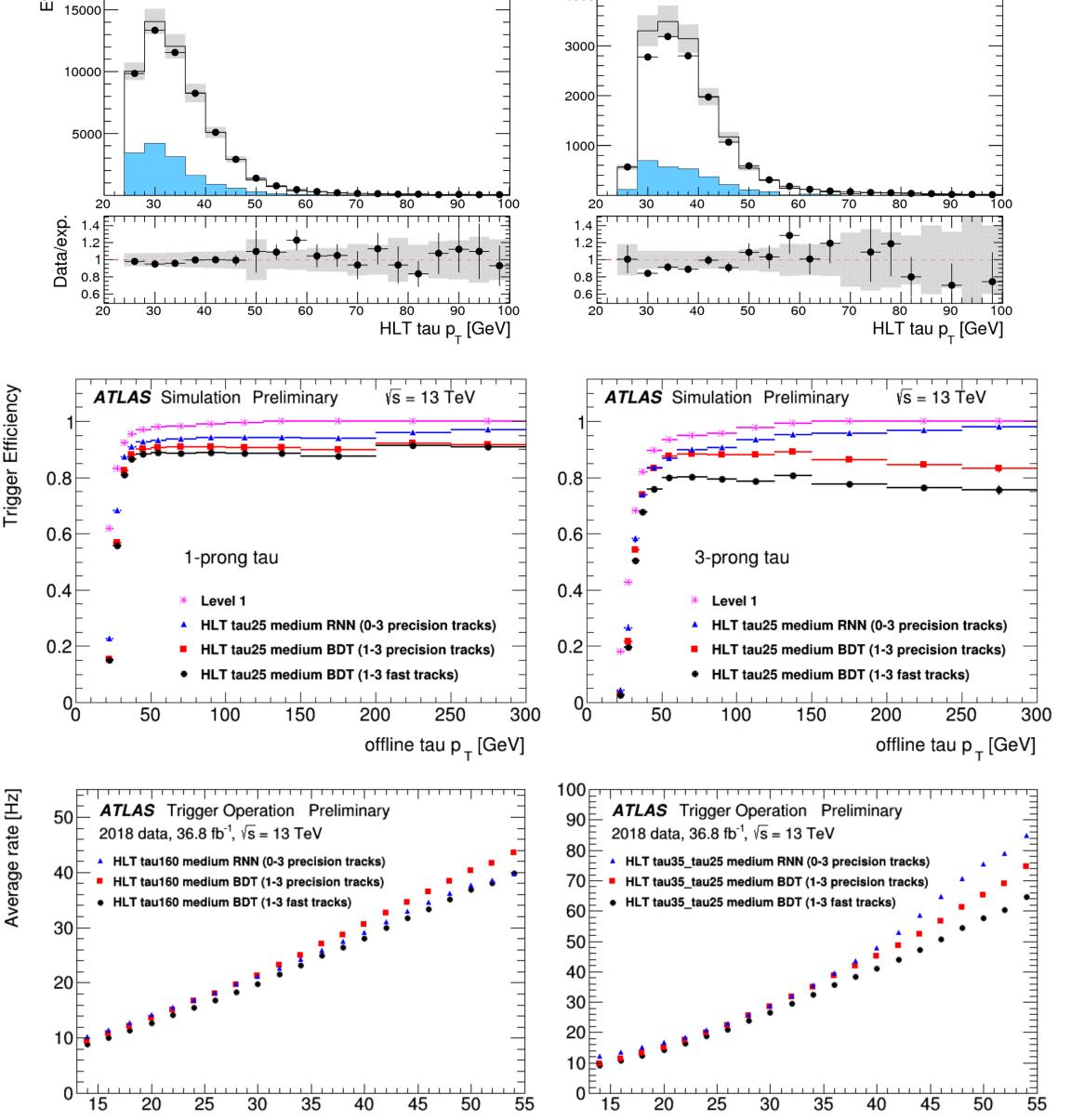
- Precision Track \rightarrow Identification (ID) algorithms *
 - \rightarrow precision tracks (refit of FTF tracks) + calorimeter info
 - \hookrightarrow used for calculation of input variables of the identification algorithms

 \hookrightarrow score for $\tau_{had-vis}$ candidate ID

Track counting: 2nd FTF stage and (2017 chains) / or (2018 chains) on precision tracks. Track cuts: 0-3 tracks; 0-tracks recovery with RNN triggers & tight ID requirements

Run 2 performance

Trigger Performance $au_{had-vis}$ • Iowest unprescaled trigger available • O: offline reconstruction ATLAS Preliminar ATLAS Preliminar 🦳 True τ] True τ 33 fb⁻¹, √s = 13 TeV 33 fb⁻', **/**s = 13 TeV $Z \rightarrow \tau_{\mu} \tau_{h_{z}}$ 1-prong . 3-prong Evaluation Use of the Tag & Drobe method 4000⊢

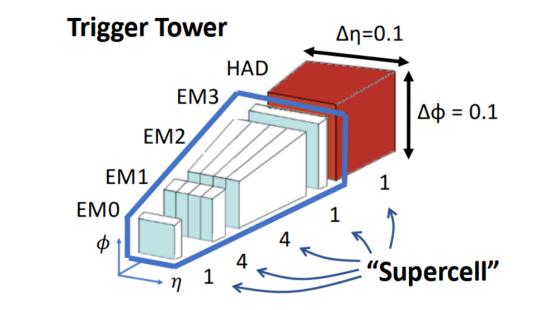

Evaluation: Use of the hag & Probe method	
Process	Notes
$Z ightarrow (au)(au) ightarrow (\mu u_{\mu} u_{ au})(au_{had-vis} u_{ au})$	high statistics, good purity
$t\overline{t} ightarrow (b\mu u_{\mu})(b au_{had-vis} u_{ au} u)$	higher $p_T \tau_{had-vis}$
Bkgr: misidentified jet as $\tau_{had-vis}$	modeling w. data-driven & MC-based methods

Modelling: Comparison of online $\tau_{had-vis}$ properties in MC and data Selection: $|\Delta R|_{\text{wrt offline}} < 0.2$, @L1: $E_T > 12 \text{ GeV}$, @HLT: $p_T > 25 \text{ GeV}$ bias of online candidate selection from offline selection (# of tracks, identification)

Efficiency: *def.* fraction of offline $\tau_{had-vis}$ probes that pass a tau trigger isolated candidate w. $E_T > 12 \text{ GeV}$ @L1: *Ex.* HLT tau25 medium ID trigger: @HLT: $p_T > 25 \text{ GeV}$, $N_{\text{tracks}} = 1, 3$, medium ID

Improvements

- **Track association:** commisioning of new trigger chains types with: track counting only on precision tracks, or
 - track selection with tighter $\Delta Z_{0,lead-add.}$ on the precision tracks
 - \rightarrow reduced fake track contamination at high pileup
- **Energy calibration:** use of Boosted Regression Trees (instead of pileup) subtraction & calorimeter response corrections) for the calibration of the hadronic tau energy scale to the energy of the visible decay products \rightarrow improved energy resolution, especially at low p_T



Run 3 outlook

Essential to address the higher Luminosity and pileup enviroments. Among the updates:

- L1Calo changes to increase detector granularity with use of "Super Cells"
- Fast Hardware Tracker system (FTK)
 - \rightarrow full event track information available for HLT

[1] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2017-061.

[2] ATLAS Tau Trigger Public Results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults

Average number of pileup interactions

Average number of pileup interactions