Search for squarks and gluinos in final states with jets and missing transverse momentum at $\sqrt{s} =$ 13 TeV using 139 fb⁻¹ data with the ATLAS detector

Introduction

Squarks and gluinos are one of the primary targets as their pair production may have a large cross section. The poster presents recent ATLAS results from searches for squarks and gluinos with jets and missing transverse momentum using 139 fb⁻¹ data.

SUSY signal scenario

- Only 1st and 2nd generation
- Require O-lepton
- Large m_{eff} and E_T^{miss} + 2-6 jets

One-step decay

- $m_{eff} = H_T + E_T^{miss}$
- H_T : Scalar of p_T sum of all jets

Analysis strategy

Two approaches are newly introduced

1. Multi-bin approach

- Categorized in different bins
- Each bin is kept orthogonal to all the others. 60 Multi-bin signal regions in total

2. BDT approach

- Consider variable correlations
- Prepared 8 BDT scores based on specific $\Delta m(\tilde{g}, \tilde{\chi}_1^0)$
- Input variables: 1st 4th Jet(P_T , η), E_T^{miss} , m_{eff} , Aplanarity
 - 10–12 variables in total

In addition to them, 10 single-bin discovery are defined

The purpose is to provide model independent upper limits

	MB-SSd	MB-GGd	MB-C
$N_{j(p_T > 50 \text{GeV})}$	≥ 2	≥ 4	≥ 2
$p_{\mathrm{T}}(j_1)$ [GeV]	> 200	> 200	> 600
$p_{\rm T}(j_{i=2,,N_{j_{\rm min}}})$ [GeV]	> 100	> 100	> 50
$ \eta(j_{i=1,,N_{j_{\min}}}) $	< 2.0	< 2.0	< 2.8
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$	> 0.8	> 0.4	> 0.4
$\Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss})_{\rm min}$	> 0.4	> 0.4	> 0.2
Aplanarity	-	> 0.04	-
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}]$	> 10	> 10	> 10
$m_{\rm eff}[{\rm GeV}]$	> 1000	> 1000	> 1600

	BDT-GGd1	BDT-GGd2	BDT-GGd3	BDT-GGd4		
$N_{j(p_T > 50 \text{GeV})}$	≥ 4					
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$	≥ 0.4					
$\Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss})_{\rm min}$	≥ 0.4					
$E_{\rm T}^{\rm miss}/m_{\rm eff}({\rm Nj})$	≥ 0.2					
m _{eff} [GeV]	≥ 1400		≥ 800			
BDT score	≥ 0.97	≥ 0.94	≥ 0.94	≥ 0.87		
$\Delta m(\tilde{g}, \tilde{\chi}_1^0)$ [GeV]	1600 – 1900	1000 - 1400	600 - 1000	200 - 600		
	BDT-GGo1	BDT-GGo2	BDT-GGo3	BDT-GGo4		
$N_{j(p_T > 50 \text{GeV})}$	≥ 6		≥	5		
$\Delta \phi(j_{1,2,(3)}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$	≥ 0.4			≥ 0.2		

> 0.4

 ≥ 0.87

≥ 1400

 ≥ 0.96

 ≥ 0.2

 ≥ 0.2

 ≥ 0.84

 ≥ 800

 ≥ 0.92

Squark-gluino decay

 $\Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss})_{\rm min}$

 $\overline{E_{\rm T}^{\rm miss}}/m_{\rm eff}(Nj)$

 $m_{\rm eff}$ [GeV]

BDT score

Background estimation

- V + Jets (main background!)
- $t\bar{t}$, single t, diboson and Multi-jets Prepare 4 CRs for each SR
- Normalize MC by using data in CRs

• $N_{SR}^{pred} = N_{SR}^{MC} * [N_{CR}^{data}/N_{CR}^{MC}]$					
CR	SR background	CR process	CR selection		
MB/BDT-CRγ	$Z(\rightarrow \nu \bar{\nu})$ +jets	γ+jets	Isolated photon		
MB/BDT-CRQ	Multi-jet	Multi-jet	reversed requirements on (i) $\Delta \phi(\mathbf{j}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})$		
			and (ii) $E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})$ or $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$		
MB/BDT-CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\rightarrow \ell \nu)$ +jets	$30 \text{ GeV} < m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 100 \text{ GeV}, b\text{-veto}$		
MB/BDT-CRT	$t\bar{t}(+EW)$ and single top	$t\bar{t} \rightarrow b\bar{b}qq'\ell\nu$	$30 \text{ GeV} < m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$		

Direct decay

VR: Check the extrapolation from CRs to SR.

A good agreement with data!

Result

Kenta Uno (The University of Tokyo), for the ATLAS collaboration Reference: ATLAS-CONF-2019-040

