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Neutrino Oscillations
Neutrinos can change flavour during their propagation

Infer parameters via measurement of  probability, P:

Unanswered questions:
θ23 octant, δCP = ?, Mass ordering
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θ23 = (45±3)°
|Δm2

32| = (2.52±0.04)x10-3 eV2
θ13 = (8.5±0.15)°
|Δm2

31| = (2.52±0.04)x10-3 eV2
θ12 = (33.6±0.8)°
Δm2

21 = (7.50±0.18)x10-5 eV2



Tokai to Kamioka (T2K) experiment
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Measurements to be made by T2K:
- Anti-νe appearance and probe CP violation
- Improved measurements of Δ𝑚#$

$ , 𝜃$# and 𝜃&#
- Precision cross-section measurements at near detector
- Searches for exotic phenomenon



T2K neutrino beam
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Antineutrino-mode flux at ND280Neutrino-mode flux at ND280

Dedicated hadron 
production measurements 
from NA61/SHINE
(Eur. Phys. J. C76 (2016) no.2, 84)

High-purity νμ beam 
Reverse horn current to produce anti-νμ beam
Place detectors 2.5° off the beam axis



T2K beam performance
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Protons on target, to date
Neutrino mode = 1.51 x 1021

Anti-neutrino mode = 1.65 x 1021

Beam power of 500 kW



Near detectors
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Located 280 m downstream of target

INGRID on-axis detector
- Monitor beam direction/stability
- Constrain flux systematics and beam direction
ND280 off-axis detector
- Same direction as Super-K, 2.5° off-axis
- Comprised of five sub-detectors in a 0.2 T magnetic field
- Measurements of neutrino interaction properties,  

intrinsic νe backgrounds and wrong-sign background
- Predict spectrum at far detector

BEAM

Number 
of events

Neutrino 
flux

Interaction 
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Detector 
efficiency



Electron Muon p0

Far detector: Super-Kamiokande
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Super-Kamiokande far detector
- 2.5° off-axis
- 50 kton water-Cherenkov detector
- No magnetic field
- Excellent μ/e separation

<1% μ misidentified as e

5 different Charged Current (CC) samples used
ν mode
CCQE 1 μ-like ring, ≤ 1decay e
CCQE 1 e-like ring, 0 decay e
CC1π 1 e-like ring, 1 decay e
anti-ν mode
CCQE 1 μ-like ring, ≤ 1 decay e
CCQE 1  e-like ring, 0 decay e

Number of 
events

Neutrino 
flux

Interaction 
cross section

Detector 
efficiency

Oscillation 
probability



T2K analysis strategy
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Neutrino 
interaction 
theory

ND280 data

Super-K data

ND280 model

Cross-section 
and interaction 
models

Hadron 
production 
NA61/CERN

INGRID/beam 
monitor data

Neutrino flux 
model

Near detector fit

Super-K 
detector model

Oscillation fit

RESULTS!

Far detector fit



Results: Atmospheric parameters
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- Reactor constraints on 𝜃&#
- Compatible with maximal 

mixing

Normal ordering Inverted ordering

sin$ 𝜃$# 0.532 0.532

Δ𝑚#$
$ ×10-# eV2 2.452 N/A

Δ𝑚#&
$ ×10-# eV2 N/A 2.432



Results: Anti-𝜈𝑒 appearance
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For anti-𝝂𝒆 events observed in runs 1-9
Define 𝜷 such that
𝛽 = 1: PMNS anti-𝜈𝑒 appearance
𝛽 = 0: No anti-𝜈𝑒 appearance

Expectations: 
𝛽 = 1: 17.1 events
𝛽 = 0: 7.7 events

Not statistically significant 
Data agrees with both hypotheses

Analysis P-value for 
𝜷 = 0 (𝝈)

P-value for 
𝜷 = 1 (𝝈)

Rate+shape 0.024
(2.25𝜎)

0.261 
(1.12𝜎)



Results: sin$ θ&#
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T2K only 𝒔𝒊𝒏𝟐 𝜽𝟏𝟑:
Normal ordering: 0.0268
Inverted ordering: 0.0300

PDG2018 best fit point(s) 𝒔𝒊𝒏𝟐 𝜽𝟏𝟑 :
Normal ordering: 0.0215
Inverted ordering: 0.0216

T2K-only data excludes some δCP
parameter space at 90% C.L.
Adding reactor measurement 
improves constraint

Preference shown for 𝜹𝑪𝑷 ~ ⁄−𝝅 𝟐

With reactor constraint
(different sin2(θ13) scale)

Without reactor constraint



Results: δCP
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Confidence intervals for the results with reactor constraint are calculated 
using Feldman Cousins method
Best fit point
Normal ordering: −1.885 radians
Inverted ordering:−1.382 radians

Normal ordering 2σ  confidence interval 
[−2.97, −0.63] radians

Inverted ordering 2σ  confidence interval 
[−1.78 − 0.98] radians

CP conserving values (0,π) fall outside of 2σ confidence intervals 



Summary
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Data collected in 2016/2017 doubled neutrino statistics! 
Updated oscillation analyses using 3.1x1021 POT (50% 𝝂, 50% anti- 𝝂)
- Analysis excludes CP conserving values at 2σ 
- Maximal mixing is preferred by T2K

Exciting programme of neutrino oscillation physics still to come!
- T2K-II operation to 2026 to collect 20.0 x 1021 POT (approx. 6 times current 

POT).
- Upgrades to near detector
- Analysis improvements and more data
- Expect sensitivity to exclude δCP conserving values at 3σ with T2K-II



Back up slides
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T2K neutrino oscillation probability
Muon neutrino disappearance

Precision measurement of θ23 and Δm31

Electron neutrino appearance

Matter effects included
Leading term dependence on sin2θ13

If sinδ≠0: Asymmetry of appearance probabilities for ν and anti-ν 15
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Observed and predicted event rates
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Predicted rates Observed
Sample δCP = -π/2 δCP = 0 δCP = π/2 δCP = π Events
CCQE 1-Ring e-like ν 74.46 62.26 50.59 62.78 75
CCQE 1-Ring mu-like ν 272.34 271.97 272.30 272.74 243
CC1pi 1-Ring e-like ν 7.02 6.10 4.94 5.87 15
CCQE 1-Ring e-like anti-ν 17.15 19.57 21.75 19.33 15
CCQE 1-Ring mu-like anti-ν 139.47 139.12 139.47 139.82 140



The 5 samples at Super-K

Neutrino mode
CCQE 1 μ-like ring, ≤ 1decay e
CCQE 1 e-like ring, 0 decay e
CC1π 1 e-like ring, 1 decay e
Antineutrino mode
CCQE 1 μ-like ring, ≤ 1 decay e
CCQE 1  e-like ring, 0 decay e

No antineutrino mode CC1π sample 
due to π- absorption

17
= detected particle



T2K-II
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Extended T2K operation proposed to 
collect 20.0 x 1021POT 
- T2K approved for 7.8 x 1021 POT
- Proposal to extend operations to 

2026
- Expect 20.0 x 1021 POT to 2026
Analysis and operational 
improvements
Anticipate 50% increase in sensitivity
Upgrade of Main Ring power supplies
Projected beam power of 1.3 MW



T2K-II Projected sensitivities
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If δCP is near current best fit point
- Potential for 3σ evidence of CP violation in T2K-II
Systematic errors have a large effect on the experiment’s sensitivity
- Dashed versus solid lines
- Expect systematic errors to improve
Significant reduction in atmospheric parameter space.



The T2K collaboration
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