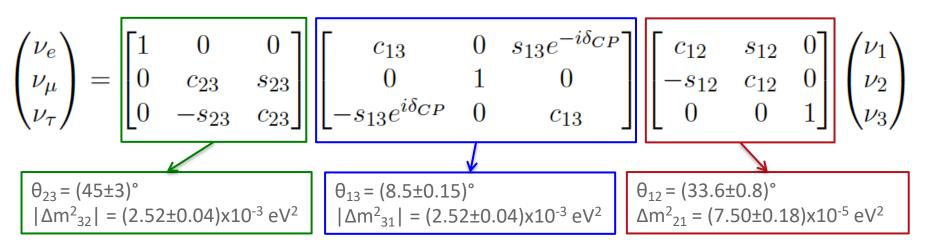
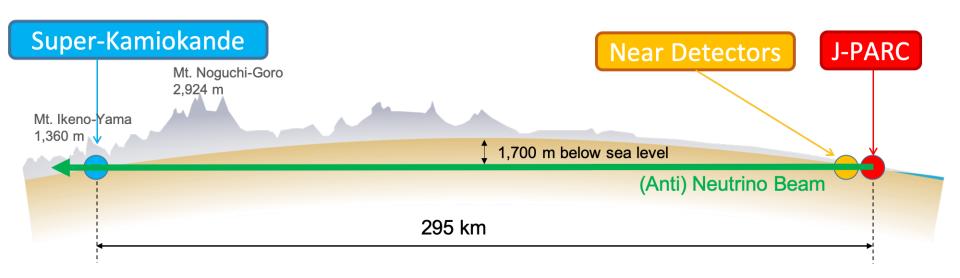


Latest Results from T2K


Helen O'Keeffe, Lancaster University, On behalf of the T2K collaboration Lepton Photon 2019

Neutrino Oscillations

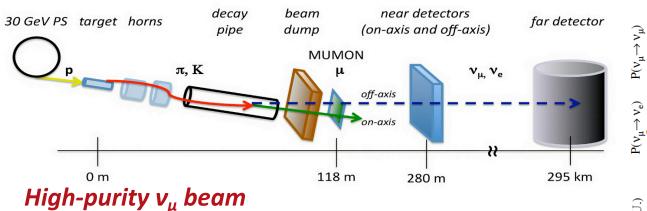
Neutrinos can change flavour during their propagation


$$\Delta m_{ji}^2 = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}$$

Infer parameters via measurement of probability, P: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(E, L, \Delta m_{ji}^2, \theta_{ij})$

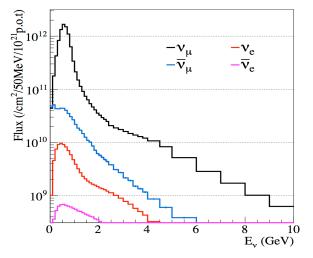
Unanswered questions:

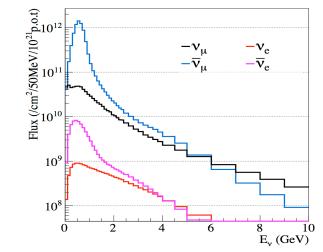
 θ_{23} octant, δ_{CP} = ?, Mass ordering

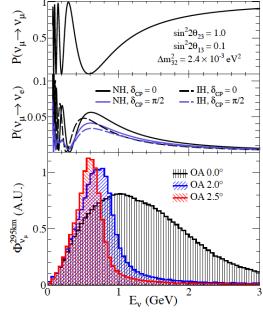


Measurements to be made by T2K:

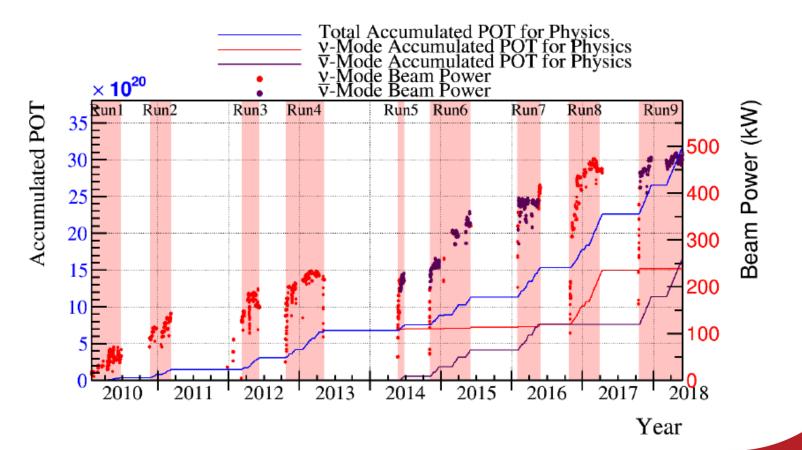
- Anti-v_e appearance and probe CP violation
- Improved measurements of Δm^2_{32} , θ_{23} and θ_{13}
- Precision cross-section measurements at near detector
- Searches for exotic phenomenon


T2K neutrino beam


Reverse horn current to produce anti- v_{μ} beam


Place detectors 2.5° off the beam axis

Neutrino-mode flux at ND280


Dedicated hadron production measurements from NA61/SHINE (Eur. Phys. J. C76 (2016) no.2, 84)

T2K beam performance

Protons on target, to date

Neutrino mode = 1.51×10^{21} Anti-neutrino mode = 1.65×10^{21} Beam power of 500 kW

Near detectors

1.5m

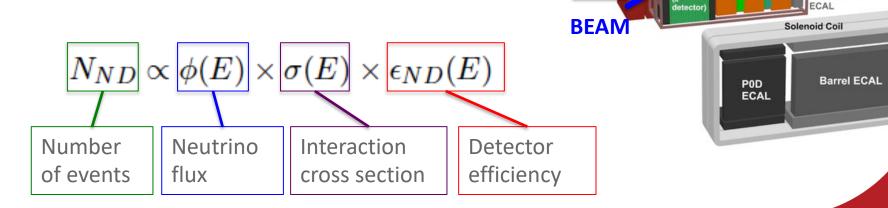
Beam center

~10m

UA1 Magnet Yoke

~10m

Downstream

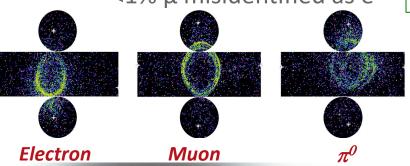

Located 280 m downstream of target

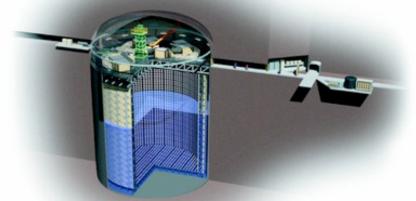
INGRID on-axis detector

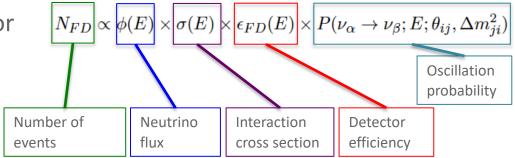
- Monitor beam direction/stability
- Constrain flux systematics and beam direction

ND280 off-axis detector

- Same direction as Super-K, 2.5° off-axis
- Comprised of five sub-detectors in a 0.2 T magnetic field
- Measurements of neutrino interaction properties, intrinsic v_e backgrounds and wrong-sign background
- Predict spectrum at far detector



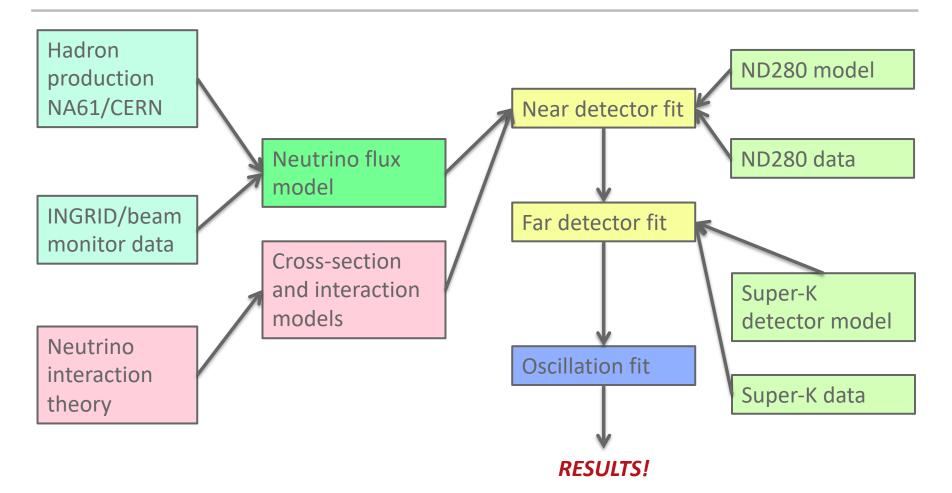

Far detector: Super-Kamiokande



Super-Kamiokande far detector

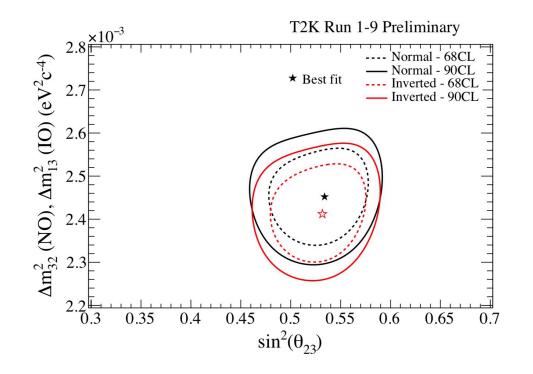
- 2.5° off-axis
- 50 kton water-Cherenkov detector
- No magnetic field
- Excellent μ /e separation <1% μ misidentified as e

5 different Charged Current (CC) samples used v mode


CCQE 1 μ -like ring, \leq 1decay e CCQE 1 e-like ring, 0 decay e CC1 π 1 e-like ring, 1 decay e

anti-v mode

CCQE 1 μ -like ring, \leq 1 decay e CCQE 1 e-like ring, 0 decay e

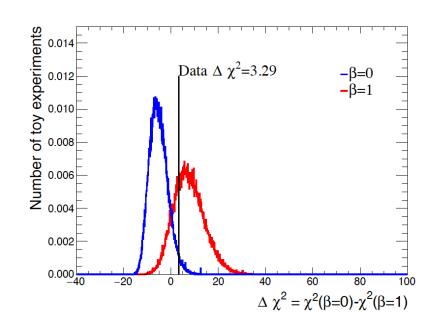

T2K analysis strategy

- Reactor constraints on $heta_{13}$
- Compatible with maximal mixing

	Normal ordering	Inverted ordering
$\sin^2 \theta_{23}$	0.532	0.532
$ \Delta m_{32}^2 \times 10^{-3} \text{ eV}^2$	2.452	N/A
$ \Delta m_{31}^2 \times 10^{-3} \text{ eV}^2$	N/A	2.432

Results: Anti- v_e appearance

For anti- v_e events observed in runs 1-9 Define β such that


- β = 1: PMNS anti- ν_e appearance
- β = 0: No anti- ν_e appearance

Expectations:

 β = 1: 17.1 events β = 0: 7.7 events

Not statistically significant

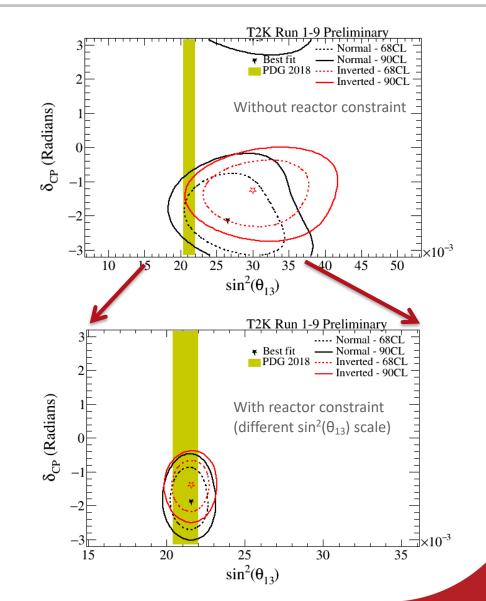
Data agrees with both hypotheses

Analysis	P-value for $\beta = 0 (\sigma)$	P-value for $\beta = 1 (\sigma)$
Rate+shape	0.024 (2.25σ)	0.261 (1.12 σ)

Results: $\sin^2 \theta_{13}$

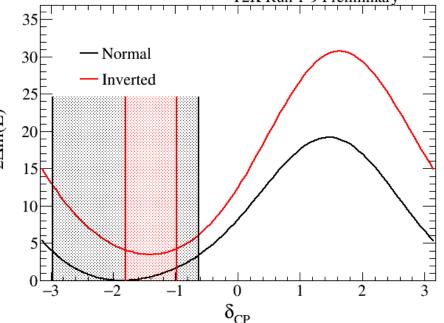
T2K only $sin^2 \theta_{13}$:

Normal ordering: 0.0268 Inverted ordering: 0.0300


PDG2018 best fit point(s) $sin^2 heta_{13}$:

Normal ordering: 0.0215 Inverted ordering: 0.0216


T2K-only data excludes some δ_{CP} parameter space at 90% C.L.


Adding reactor measurement improves constraint

Preference shown for $\delta_{CP} \sim -\pi/2$

CP conserving values (0, π) fall outside of 2 σ confidence intervals

Confidence intervals for the results with reactor constraint are calculated

Best fit point

Normal ordering: -1.885 radians Inverted ordering: -1.382 radians

[-1.78 - 0.98] radians

using Feldman Cousins method T2K Run 1-9 Preliminary

Results: δ_{CP}

Updated oscillation analyses using 3.1×10^{21} POT (50% ν , 50% anti- ν)

- Analysis excludes CP conserving values at 2σ
- Maximal mixing is preferred by T2K

Exciting programme of neutrino oscillation physics still to come!

- T2K-II operation to 2026 to collect 20.0 x 10²¹ POT (approx. 6 times current POT).
- Upgrades to near detector
- Analysis improvements and more data
- Expect sensitivity to exclude δ_{CP} conserving values at 3σ with T2K-II

Back up slides

T2K neutrino oscillation probability

Muon neutrino disappearance

$$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \times \sin^2 \frac{\Delta m_{31}^2 L}{4E}$$

Precision measurement of θ_{23} and Δm^2_{31}

Electron neutrino appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}}$$
$$-\alpha \sin \delta \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$$
$$+\alpha \cos \delta \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}$$
$$+\mathcal{O}(\alpha^{2})$$

$$\begin{aligned} \alpha &= \left| \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \right| \\ \Delta &= \frac{\Delta m_{31}^2 L}{4E} \\ x &= \frac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2} \end{aligned}$$

Matter effects included

Leading term dependence on $sin^2\theta_{13}$

If $\sin\delta \neq 0$: Asymmetry of appearance probabilities for v and anti-v

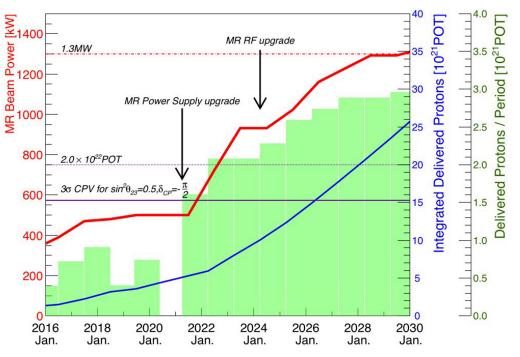
Observed and predicted event rates

	Predicted rates			Observed	
Sample	$δ_{CP} = -\pi/2$	$\delta_{CP} = 0$	δCP = π/2	δCP = π	Events
CCQE 1-Ring e-like v	74.46	62.26	50.59	62.78	75
CCQE 1-Ring mu-like v	272.34	271.97	272.30	272.74	243
CC1pi 1-Ring e-like v	7.02	6.10	4.94	5.87	15
CCQE 1-Ring e-like anti-v	17.15	19.57	21.75	19.33	15
CCQE 1-Ring mu-like anti-v	139.47	139.12	139.47	139.82	140

The 5 samples at Super-K

$\nu_{\mu}(\bar{\nu}_{\mu}) + N \rightarrow \mu^{-}(\mu^{+})$ +XNeutrino mode CCQE 1 μ -like ring, \leq 1decay e $e^-(e^+) + \bar{\nu}_e(\nu_e) + \nu_\mu(\bar{\nu}_\mu)$ CCQE 1 e-like ring, 0 decay e $CC1\pi$ 1 e-like ring, 1 decay e $\nu_e(\bar{\nu}_e) + N \rightarrow e^-(e^+)$ +XAntineutrino mode CCQE 1 μ -like ring, \leq 1 decay e CCQE 1 e-like ring, 0 decay e $\nu_e + N$ -+XNo antineutrino mode CC1 π sample $\mu^+ + \nu_\mu$ due to π^{-} absorption $+ \nu_e + \overline{\nu}_\mu$

= detected particle


T2K-II

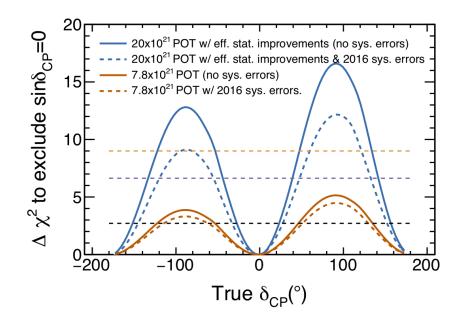
Extended T2K operation proposed to collect 20.0 x 10²¹POT

- T2K approved for $7.8 \times 10^{21} \text{ POT}$
- Proposal to extend operations to 2026
- Expect 20.0 x 10²¹ POT to 2026

Analysis and operational improvements

Anticipate 50% increase in sensitivity Upgrade of Main Ring power supplies Projected beam power of 1.3 MW T2K-II Target POT (Protons-On-Target)

T2K-II Projected sensitivities


If δ_{CP} is near current best fit point

- Potential for 3σ evidence of CP violation in T2K-II

Systematic errors have a large effect on the experiment's sensitivity

- Dashed versus solid lines
- Expect systematic errors to improve

Significant reduction in atmospheric parameter space.

The T2K collaboration				ncaster 🥦 iversity
*				
Canada	Japan	Poland	Switzerland	USA
TRIUMF	ICRR Kamioka	IFJ PAN, Cracow	CERN	Boston U.
U. B. Columbia	ICRR RCCN	NCBJ, Warsaw	ETH Zurich	Colorado S. U.
U. Regina	Kavli IPMU	U. Silesia, Katowice	U. Bern	Duke U.
U. Toronto	KEK	U. Warsaw	U. Geneva	Louisiana State U.
U. Victoria	Kobe U.	Warsaw U. T.		Michigan S.U.
U. Winnipeg	Kyoto U.	Wroclaw U.	United Kingdom	Stony Brook U.
York U.	Miyagi U. Edu.		Glasgow U.	U. C. Irvine
France	Okayama U.		Imperial C. London	U. Colorado
CEA Saclay	Osaka City U.	Russia	Kings C. London	U. Pittsburgh
LLR E. Poly.	Tokyo Institute Tech	INR	Lancaster U.	U. Rochester
LPNHE Paris	Tokyo Metropolitan U.		Oxford U.	U. Washington
Germany	U. Tokyo	Spain	Queen Mary U. L.	
Aachen U.	Tokyo U of Science	IFAE, Barcelona	Royal Holloway U.L	. Vietnam
Italy	Yokohama National U.	IFIC, Valencia	STFC/Daresbury	IFIRSE
INFN, U. Bari		U. Autonoma Madrid	STFC/RAL	IOP, VAST
INFN, U. Napoli	 ∼ 500 members, 65 Institutes, 12 countries 		U. Liverpool	
INFN, U. Padova			U. Sheffield	20
INFN, U. Roma			U. Warwick	20