Low Radioactivity Argon for Dark Matter and Rare Event Searches

Rahaf Ajaj, PhD

On behalf of the Global Argon Dark Matter Collaboration (GADMC)

The 29th International Symposium on Lepton Photon Interactions at High Energies

5th – 10th August 2019

Toronto, ON, Canada
NEW SPEAKER. DARK MATTER TALK.
• DarkSide Program
• Current Experiments
• Future Projects & Experiments.
• Summary
• DarkSide Program.
• Global Argon Dark Matter Collaboration.
• 420 Researchers from 59 institutions and 14 countries.
• Current experiments: DS-50, DEAP, ArDM, MiniClean.
• Future experiments: DS-20K, ARGO.
• Labs: LNGS, SNOLAB, LSC & CERN.
Why Liquid Argon?

- Efficient Scintillator
- Unsurpassed discrimination
- Excellent Sensitivity
- Exceptional Radioactivity & Chemistry
- Relatively inexpensive

NR & EM

WIMP masses > 30 GeV$/$c2 with single/two phase detection

Low radon backgrounds (160 nBq/kg of 222Rn, 2.6 nBq/kg of 220Rn in DEAP3600)
Current Experiments

DEAP
- Dark matter Experiment using Argon Pulse-shape discrimination.
- Single-phase liquid Argon (LAr) scintillation light detector, holding 3279 Kg at SNOLAB.
- Most sensitive WIMP masses > 70 GeV/c².

ArDm
- Argon Dark Matter target 850 Kg LAr.
- Only measured AAr, using a fiducial region of the inner 200 litres.
- Nowadays taking data in dual phase at LSC.
- Will be used as an active veto for future experiments (DArT/DarkSide-20k).

MiniClean
- Single phase detector utilize 500 kg of LAr.
- Fiducial mass region of 150 Kg
- Uses 92 sensitive photodetectors.
- Operating at SNOLAB since 2013.

DarkSide-50
- Dual-phase argon time projection chamber.
- Presently it is filled with of UAr.
- World’s most sensitive for WIMP masses in the range of (1.8 GeV/c² - 6.0 GeV/c²).
- 39Ar depletion factor 1400.
Spin-independent DM-nucleon cross section
90% C.L. exclusion limits / sensitivity curves
• Challenge: Argon radioisotopes; 39Ar (1 Bq/Kg), 42Ar (68µBq/Kg).

• Mantle gas has the lowest 39Ar production.

• Geological formation trap gasses underground.

• Argon source: CO$_2$ well in southwest Colorado (400 ppm Ar).

• DS-50: 39Ar = 0.73 mBq/Kg
 o 1400x reduction from AAr.
 o Low production
 o Suspected contamination with AAr.
Maximize the DM discovery potential with background free detectors

How?

Increment the production rate of UAr (Urania)
Further purification after extractions (Aria)
\(^{39}\text{Ar}\) reduction by the factor of 15,000 (DS-20K)
Reach beyond the sensitivity corresponding to the “neutrino floor” (ARGO)
• **Target:** extract and **purify** low-radioactivity UAr at a rate of 330 Kg/day with purity of better than 99.99%.
 - 50 tonne to fill DS-20K (LNGS 2022-2023).
 - 400 tonne to be stored at SNOLAB (ARGUS).
 - Future larger detector (ARGO – collecting argon 2022-2029).

• **Source:** Doe Canyon , Cortez, CO.

• **Urania feed:** ~ 95% CO₂ + few percent N₂ + 1% CH₄ + 430 ppm of UAr + traces of hydrocarbons.

• **Shipping/Transportation:** Phase 1 (DS-20K) & Phase 2 (ARGUS)

• **Operation:** October 2021.

• **Storage:** ARGUS – SNOLAB.
Gas Sampling & Analysis

Gas to RGA System
Feed from URANIA PLANT
Gas Container
To Cirrus 3-XD Heated Capillary Inlet, Pressure < 1000 Torr
Back to URANIA PLANT

The 16 channel multi-stream rotary valve & actuator at CU

Max Pressure 100 – 200 psi
Max Temp 75° - 200°C
Max 15 psi
• Goal: Purification for UAr to get detector grade Ar, free from N and other impurities.
• Two cycles are needed for separation of light and heavy components.
• Production in chemical mode (DS-20K): 1tonne/day.
• Commissioning scheduled by Q2 of 2020 in Sardinia, Italy.
- DArT is a small (~1 L) chamber that will measure the depletion of ^{39}Ar in UAr (URANIA/ARIA).
- Aiming 20% precision in a week for DF 1400 without lead shield. With lead shield 7%.
- The detector will be immersed in the LAr active volume of ArDM (active vito)
- Will be installed at the LSC and commissioned in the Q4 of 2019.
Next generation LAr detector for WIMP searches.
Consists of two detectors (inner & veto).
Operate with 50 tonne low radioactivity underground argon (UAr).
Membrane cryostat filled with ~700 tonnes of AAr.
Designed to reach an exposure of 100 tonne-year in background-free mode (less than 0.1 events of background).
Will be located at LNGS and commissioned by ~2023.
Spin-independent DM-nucleon cross section
90% C.L. exclusion limits / sensitivity curves

\[\sigma = 9 \times 10^{-48} \text{ @ 1 TeV/c}^2, \quad \sigma = 9 \times 10^{-47} \text{ @ 10 TeV/c}^2 \]
• Target: Most sensitive WIMP search.
• Aims to reach beyond the sensitivity corresponding to the “neutrino floor” in DM searches
• Operate with \(~400\) tonne detector free of background UAr.
• Planning for 300 tonne (fiducial) for 3 ktonne-year free of background.
• Will be commissioned by \(~2029\).
• Currently exploring **detailed design**, including experience from progenitor experiments (both single-phase S1-only and dual-phase TPC).

• **Conceptual design** underway for other backgrounds (cosmogenic-related, neutrons, Cherenkov, etc.)

• Possibility of **intermediate-energy solar neutrino measurements**; **ktonne-year** exposure allows very sensitive measurements.

• Exploring the possibility of other physics measurements by **reconfiguring the detector** (e.g. addition of xenon or other gases) for sensitivity to other WIMP models or parameter space.
Spin-independent DM-nucleon cross section
90% C.L. exclusion limits / sensitivity curves

\[\sigma = 9 \times 10^{-49} \, \text{at 1 TeV/c}^2, \quad \sigma = 9 \times 10^{-48} \, \text{at 10 TeV/c}^2 \]
• **GADMC** is aiming to maximize the DM discovery potential.
• **UAr** is promising technology for the future DM detectors.
• **DArT** is a small chamber will be installed in ArDM at LSC to measure the depletion of 39Ar in Q4 of 2019.
• **Aria** will do the chemical purification for UAr for 39Ar depletion in Sardinia in Q2 of 2020
• **Urania plant** will be ready for operation October 2021 and the first 50 tonne production July 2022
• **ARGUS** is the UAr storage facility will be located in SNOLAB.
• **DS-20K** is the next generation of LAr detector will be located at LNGS and commissioned by 2023.
• **ARGO** is the longer term objective of the GADMC aims to be the most sensitive WIMP search detector commissioned by ~ 2029, Preferred location SNOLAB.
Thank You!