

A Generative-Adversarial Network for the Simulation of QCD Dijet Events at the LHC

R. Di Sipio, M. Faucci Giannelli, S. Ketabchi, S. Palazzo arXiv:1903.02433

LeptonPhoton 2019, 5-10 Aug, Toronto

physics of QCD Events

At the LHC, pp collisions result in the interaction of quarks and gluons (partons). $2\rightarrow 2$ scattering processes with a pair of jets in the final state are called **dijet events**.

Jets emerge from pp collisions with **high transverse momentum** (p_T) and **large angle** (η) with respect to the incoming partons. The **jet mass** ($m = \sqrt{E^2 - P^2}$) comes mostly from the complex dynamics of **strong interactions**.

The simulation of these events is performed by **Monte Carlo generators**. The complete simulation of a single event takes **several minutes**, while **millions of events** have to be generated!

physics of QCD Events

Dijet / multi-jet events are the **largest background** to precision measurements and searches for physics beyond the Standard Model in channels with no leptons

Monte Carlo simulations of these processes are **inaccurate or impractical**. Typical solutions involve:

- Data driven estimations
- Fitting with parametric function

What we want eventually is a method that is:

- **Generic** dijet, tt, W/Z+jets...
- Accurate e.g. includes higher-order terms
- **Fast** generate O(10⁶) events in seconds
- **Robust** extrapolation to tails (high p_T , m_{jj})

This talk: proof of concept with simple physics case (dijet production)

Cenerative Network

Generative Network

"Fake"

"Real"

Adjust weights in G(z) so that $p(x)=p(G(z)) \sim p(y)$

Cenerative Network

"Fake"

"Real"

Adjust weights in G(z) so that $p(x)=p(G(z)) \sim p(y)$

Generalive Adversarial Network

Fine tune G and D weights during non-supervised training

These persons do not exist

https://www.thispersondoesnotexist.com/

Imagined by a GAN (generative adversarial network)
StyleGAN (Dec 2018) - Karras et al. and Nvidia
Original GAN (2014) - Goodfellow et al.
Don't panic. Learn about how it works.
Help me figure out what was learned here.
Help this AI continue to dream
Another | Save • Cats | Articles | TV Friends - Office | x

These persons do not exist

All individual images look human How about average and RMS of:

- Distance between eyes?
- Nose length/width?
- Mouth width?
- Forehead height?
- Are faces too round?

https://www.thispersondoesnotexist.com/

These persons do not exist

https://www.thispersondoesnotexist.com/

Imagined by a GAN (generative adversarial network)
StyleGAN (Dec 2018) - Karras et al. and Nvidia
Original GAN (2014) - Goodfellow et al.
Don't panic. Learn about how it works.
Help me figure out what was learned here.
Help this Al continue to dream
Another | Save • Cats | Articles | TV Friends - Office | x

Real Monte Carlo Sample

- MadGraph5 + Pythia8, 10 million events ~ 0.5 fb-1
- Parton-level filter: $H_T > 500 \text{ GeV}$
- Fast detector simulation (Delphes3) with pileup <µ>=25
- Anti- k_T R=1.0 jets, $p_T > 250$ GeV
- Approx 7.5M events generated events (particle level), 4.5M after detector simulation (reco level)
 - 1M events in ~80 sec

Network Architecture

Other architectures tried (fully connected, RNNs) but CNNs yielded best results thanks to their superior ability to "learn" complex patterns

Pre-processing

- Dijet events have a number of intrinsic symmetries
- Symmetries are hard to learn just by throwing events at the network
- Preprocessing:
 - Rotation so that φ₁ = 0
 (azimuthal symmetry, also removes one degree of freedom)
 - Mirror so that $\Delta \phi > 0$
 - Flip pseudo-rapidity η (left-right symmetry)

- Training is a minmax game, not a minimization
 - ⇒ **stabilization** of loss
 - ⇒ No natural way to measure the agreement for choosing the best training epoch
 - Take the one with lowest χ²
- Cross-entropy loss quickly converges to -ln(0.5)=0.693
- GPU NVIDIA Quadro P6000,
 ~100k epochs / 1hr

Results - Particle level

Results - Reco level

Results - boosted top quarks

- tt̄→WbWb→bqq̄bq̄
- Non trivial to fit mass distribution with two peaks:
 - Semi-boosted:
 m_J ~ m_W ~ 80 GeV
 - Fully-boosted:
 m_J ~ m_t ~ 173 GeV

Results - Extrapolation

- Use only 150k events with m_{jj} > 1.5 TeV to train the network
- Generate 1M events
- Compare against:
 - 4-params fit $f(x) = \frac{p_0(1-x)^{p_1}}{x^{(p_2+p_3\log x)}}$
 - Real MC

conclusions and Outlook

- Machine learning applications to HEP is blooming
- Generative networks to speed up generation of large Monte Carlo samples
 - Generate small MC with high accuracy, use GAN to increase statistics
 - Quality of the inputs >> the network parameters
 - **Symmetry** ⇒ exploit it!
 - GANs are not a minimization, picking up the **best** epoch is **not trivial** (e.g. lowest χ^2)
- **Generic** method, apply to other processes (top quarks, W/Z+jets, Higgs...)
- Possible extensions:
 - Variable **conditioning** to populate more some regions of the phase-space (e.g. p_T -slicing, high- m_{jj})
 - Use auto-encoder (non-linear PCA) to handle arbitrary number of input variables
- Competing methods (β-VAE) also under study by other groups

Backup

Monte Carlo Simulations

Hard-scattering process

Parton Shower /
Hadronization /
Decay

proton-proton Interaction

Particle level

Detector Simulation

Final State Objects reconstruction

Reco level

- Particle-level simulations: LO(fast), NLO(slower), NNLO(slow, not always matched to parton shower)
 - Ultimate accuracy (e.g. MENLOPS) usually too slow to produce O(100M) events are needed at the LHC Run3
- Detector simulation: Full/Accurate/Slow (10 mins / event), Fast/LessAccurate
 - Attempts to speed up fast simulations (e.g. calorimeter) with GANs, tracking with other ML methods
- All in one sweep?

software packases

- Keras v2.2.4
- Tensorflow v1.12
- Scikit-learn, Pandas, other libraries
- Input scaled in the [-1,1] range

Parameters

- Generators: 128 random number ~U(0,1) → 7 physics quantities:
 - p_T, η, m of the leading jet
 - p_T, η, φ, m of the sub-leading jet
- Loss functions:
 - Generator: mean square error (MSE)
 - Discriminator/GAN: binary cross-entropy
- Optimizer: Adam, Ir=10⁻⁵, β_1 = 0.5, β_2 = 0.9 (slow gradient descent with momentum)