

Lepton Photon 2019

The T2K ND280 Upgrade

Clark McGrew Stony Brook Univ. for the T2K Collaboration (ND280 Upgrade Working Group)

The T2K Collaboration

U. Tokyo

Yokohama National U.

\sim 500 members, 68 Institutes, 12 countries

Canada	Italy	Poland	Switzerland	USA
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	ETH Zurich	Boston U.
U. Regina	INFN, U. Napoli	NCBJ, Warsaw	U. Bern	Colorado S. U.
U. Toronto	INFN, U. Padova	U. Silesia, Katowice	U. Geneva	Duke U.
U. Victoria	INFN, U. Roma	U. Warsaw		U. Houston
U. Winnipeg	Japan	Warsaw U. T.	United Kingdom	Louisiana State U.
York U.	ICRR Kamioka	Wroclaw U.	Imperial C. London	Michigan S.U.
CERN	ICRR RCCN		Kings C. London	SLAC
	Kavli IPMU		Lancaster U.	Stony Brook U.
	KEK	Russia	Oxford U.	U. C. Irvine
France	Kobe U.	INR	Queen Mary U. L.	U. Colorado
CEA Saclay	Kyoto U.		Royal Holloway U.L.	U. Pennsylvania
LLR E. Poly.	Miyagi U. Edu.	Spain	STFC/Daresbury	U. Pittsburgh
LPNHE Paris	Okayama U.	IFAE, Barcelona	STFC/RAL	U. Rochester
	Osaka City U.	IFIC, Valencia	U. Glasgow	U. Washington
Germany RWTH Aachen	Tokyo Institute Tech	U. Autonoma Madrid	U. Liverpool	
	Tokyo Metropolitan U.		U. Sheffield	Vietnam
	Tokyo U of Science		U. Warwick	IFIRSE

6 August 2019

McGrew -- Lepton Photon 2019

(2019)

2

Search for CP Violation w/ T2K-II

- \triangleright T2K-II extends T2K exposure from 7.8×10²¹ POT to 20×10²¹ POT.
- > Requires systematic uncertainty be significantly reduced
 - \rightarrow Goal: 3σ sensitivity for CP violation

Reduction in flux & cross section systematics

-					
Parameter	Current ND280 (%)		Upgrade ND280 (%)		
SK flux normalisation	3.1		2.4		
$(0.6 < E_{\nu} < 0.7 \text{ GeV})$					
$\mathrm{MA}_{\mathrm{QE}}(\mathrm{GeV/c^2})$	2.6	> 30	0/2	1.8	
v_{μ} 2p2h normalisation	9.5			5.9	
2p2h shape on Carbon	15.6	redu	ction	9.4	
MA_{RES} (GeV/ c^2)	1.8			1.2	
Final State Interaction (π absorption)	6.5		3.4		

T2K-II CP conservation exclusion goal w/ 20 x 10²¹ POT (the 2025 goal)

The Existing ND280 Detectors

➤ Off-Axis: ND280 @ 2.5 deg

→ Water Target for stat. subtraction

→ Uses "UA1" magnet (@ 0.2 T)

Target+Particle Tracking

 $\succ \pi^{o}$ detection

> EM calorimetry

Side muon range detection

Proton momentum threshold:

→ 450 MeV/c (i.e. ~100 MeV KE)

Acceptance in forward direction

 \rightarrow SK has 4π acceptance

 Uncertainty in track direction and charge

→ Limit timing and TPC acceptance

Reconstructed ND280 Muons

Different acceptances contribute to systematic

The ND280 Upgrade Detector

- Goal: Reduce ND systematics
 - → Fully active target
 - " 4π " acceptance for charged particles
 - \rightarrow Improved e^{\pm}/γ separation

Upstream ECal

- → Neutron detection
 - Measure kinetic energy

- SuperFGD
 - → Active Target Mass: ~2 tonne
 - → Scintillator: 1 cm³ cubes
- > New TPCs
 - → High Angle TPCs
 - Good acceptance for muons transverse to v beam
 - > New TOF
 - Clear tag for entering charged particles
 - Existing Components
 - → Surrounding ECals
 - Minimum of ~5 Rad.Lengths
 - → Downstream TPCs
 - → Magnet: 0.2 T

arxiv:1901.03750

The SuperFGD Concept

- > Neutrino interactions have particles going in all directions
- > A plastic scintillator active target is usually constructed with bars
 - → Defines a preferred axis → Acceptance varies relative to bar orientation
- \triangleright Need a " 4π " scintillator detector
 - → Use cubes not bars (light contained in each cube)
 - → Read-out in 3 projections using wavelength shifting fiber
 - > A single energy deposit gives an "XYZ" coordinate (not just "XZ", or "YZ")
- ➤ Segmentation scales like volume → Readout scales like area
 - → 2M cubes need ~60K channels (a ~ 200cm × 200cm × 60cm target)
- Uniform target material (Scintillator and WLS fibers)
- Excellent performance in Beam Tests

A T2K ND280 CR Muon Need 2 layers for 3D

Yuri Kudenko - Scintillating perspective, 2017

SuperFGD Performance

- High Granularity
 - → Reduces proton threshold
 - → Detailed track reconstruction
- Precise timing
 - → Identify track direction and reduce external backgrounds

- High light yield
 - → Unambiguous proton identification
 - → Low hit threshold
- Improved Sensitivities
 - → Light and timing → neutrons
 - Reduced proton threshold

(1901-03750)

High Angle TPC

(Instrumented with Resistive Micromegas)

- Instrumented with Resistive Micromegas
 - → Minimizes sparking
 - → Improves resolution (per pad)
- > Field Cage
 - → Thin solid insulator wall to minimize dead space volume

Parameter	Value	
Overall $x \times y \times z$ (m)	$2.0 \times 0.8 \times 1.8$	
Drift distance (cm)	90	
Magnetic Field (T)	0.2	
Electric field (V/cm)	275	
Gas Ar-CF ₄ -iC ₄ H ₁₀ (%)	95 - 3 - 2	
Drift Velocity cm/μs	7.8	
Transverse diffusion $(\mu m/\sqrt{cm})$	265	
Micromegas gain	1000	
Micromegas dim. z×y (mm)	340×410	
Pad $z \times y (mm)$	10×11	
N pads	36864	
el. noise (ENC)	800	
S/N	100	
Sampling frequency (MHz)	25	
N time samples	511	

Resistive Micromegas

(Encapsulated resistive anode with grounded mesh)

- Beam Test at CERN 2018 using HARP field cage
 - → T2K MM Pad geometry with resistive foil
 - ➤ T2K resolution: ~ 0.7 mm
 - ➤ With resistive foil: < 0.5 mm
 - → Get similar resolution with fewer pads
- Recent test at DESY
 - → Used candidate resistive MM module

Time Of Flight Detector

- New detectors are enclosed in a Timeof-Flight detector
 - → Nearly hermetic coverage for the new TPCs and the SuperFGD.
- Improves rejection for incoming backgrounds
 - \rightarrow Achieved timing resolution is $\sim 70 \text{ ps}$
 - → Charged track direction unambiguously determined (in combination with the SuperFGD)

Sixteen 6x6 mm² MPPC attached in parallel used to achieve timing resolution.

Achieved time resolution σ ~70 ps

Expanded coverage for TPCs

- → Charge identification
- → dE/dX
- High efficiency for stopping muons
 - → Measure kinematics
- Muon acceptance almost independent of angle
- Forward/Backward separation from timing
- Significant coverage for the full phase space

Effects of the Upgrade: Neutrons in the sFGD

- Detector
 - → High granularity gives significant efficiency for neutrons
 - → Energy resolution for longer path lengths
- > Neutron selection looks for hits separated from the vertex
 - → Must also be outside of a 3cm x 3cm cube around the reconstructed vertex.
 - → Time defined by the first neutron hit
 - → Roughly 60% efficiency to detect neutrons from a neutrino interaction
- Neutron energy reconstructed from time-of-flight
 - → Shown resolution assumes a 0.9 ns single fiber time resolution

Transverse Momentum for v. and v.

- > Improved acceptance gives better "direct" probes of nuclear effects1
 - → Low sFGD proton threshold
 - → sFGD sensitivity to neutrons
- > Example: Lepton+Nucleon (CCQE-like) events
 - \rightarrow Magnitude of net transverse momentum $\rightarrow P_f$
 - Orientation of net transverse momentum \rightarrow FSI

Summary and Conclusions

- To fully exploit T2K we need a better understanding of neutrino interactions
 - → Leads to a better understanding of oscillation systematic uncertainties
- The T2K ND280 detector is being upgraded to meet this challenge
 - → Measure neutrino events over an expanded phase space
 - Nearly " 4π " acceptance to measure muons in a TPC
 - → First significant acceptance for neutrons in the T2K ND280
- ➤ Active target using an innovative scintillator target (SuperFGD)
 - \rightarrow Fully active, and 4π acceptance for charged particles
- > TPCs instrumented with Resistive Micromegas
 - → Improved resolution (or reduced number of electronics channels)
- > Beam tests have demonstrated the performance of the new systems
 - → Tests of SuperFGD, TPCs with resistive micromegas, and TOF
- > Schedule:
 - → Production during 2019 and 2020
 - → Installation during 2021
 - → Propose a 20×10²¹ POT exposure

Backup Slides

Basic Active Target Performance

CERN 2017 Beam Test - NIM A923 (2019) 134

- > Measurements of
 - → Light yield ~ 40 pe/fiber
 - > MPPC readout
 - > 1 mm Y11 fibers w/ 1.3 m length
 - → Timing resolution
 - → Cube to cube light propagation (<4%)

1 Fiber/1 Cube

1 Fiber/1 Cube

