

Results for strongly produced SUSY at CMS

Ana Ovcharova
on behalf of the CMS collaboration
University of California, Santa Barbara

August 6th, 2019
29th International Symposium on
Lepton Photon Interactions at High Energies
Toronto, Canada

EWK hierarchy problem & Supersymmetry

M. Buckley, A. Monteux and D. Shih, arXiv:1611.05873

Huge landscape of possible final states

★ Final states ~ fully spanning flavor, multiplicity, kinematics Huge landscape of possible final states

- ★ Final states ~ fully spanning flavor, multiplicity, kinematics
 - * tackle by slicing phase space in bins...
- **★**0ℓ analyses
 - maximize covered phase-space
 - no leptons/tracks with $p_T > 5-10 \text{ GeV}$
 - $N_{jets} \ge 2$ and $N_b \ge 0$
 - M_{T2} or H_{T}^{miss} (>250-300 GeV)
 - ◆ 4D binning: M_{T2}/H_T^{miss}, H_T, N_{jets}, N_b
- ★ 1ℓ analyses
 - + low multiplicity:
 - using top tagging
 - target: stop production

New for LP 2019, focus today!

- + high multiplicity:
 - using sum of large-R jet masses
 - target: gluino production
- ★ SS 2ℓ or $\geq 3\ell$ analysis
 - can trigger on leptons instead of MET
 - access compressed spectra and RPV

High multiplicity 11: Selection

- **★** Single lepton
- * MET > 200 GeV, $S_T = H_T + p_T(\ell) > 500 \text{ GeV}$
 - + ensures being on trigger plateau
 - cut bulk of tt background
- \star N_{jets} ≥ 7 → further reduce tt, enter ISR dominated regime
- \star N_b ≥ 1 → significant reduction in non-top backgrounds

High multiplicity 11: Selection

- **★** Single lepton
- * MET > 200 GeV, $S_T = H_T + p_T(\ell) > 500 \text{ GeV}$
 - ensures being on trigger plateau
 - cut bulk of tt background
- \star N_{iets} ≥ 7 → further reduce tt, enter ISR dominated regime
- \star N_b ≥ 1 \rightarrow significant reduction in non-top backgrounds

High pt ISR jet

pseudorapidity (η)

tt decay products/

"Jet Substructure by Accident"
T. Cohen, E. Izaguirre, M. Lisanti, H. Lou arXiv: 1212.1456

- ★ M_J grows with correlated high p_T activity
 - * Individual high p_T jets have minimal contribution

Background estimate in a nutshell

- **★** Key observation:
 - 1 ℓ and 2 ℓ tt have the same M_J shape in high ISR regime!
- ★ Separate regions enriched in 1ℓ vs 2ℓ tt using m_T

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\ell}p_{\mathrm{T}}^{\mathrm{miss}}[1-\cos(\Delta\phi_{\ell,\vec{p}_{\mathrm{T}}^{\mathrm{miss}}})]}$$

Background estimate in a nutshell

- **★** Key observation:
 - + 1ℓ and 2ℓ $t\bar{t}$ have the same M_J shape in high ISR regime!
- ★ Separate regions enriched in 1ℓ vs 2ℓ tt using m_T

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\ell}p_{\mathrm{T}}^{\mathrm{miss}}[1-\cos(\Delta\phi_{\ell,\vec{p}_{\mathrm{T}}^{\mathrm{miss}}})]}$$

- ★ Build an ABCD with M_J and m_T plane
 - → use M_J shape low m_T (R1-R2) → predict M_J shape high m_T (R3-R4)
 - ◆ normalization from low M_J+high m_T region (R3)
 - \rightarrow prediction @ high M_J+high m_T signal region (R4)
- **★** Correction for residual correlation between ABCD variables derived from simulation
 - modeling of correlation checked in data control samples
- ★ Additional binning in MET, N_{jets} and N_b to enhance sensitivity

Comparison of prediction to observed yields

- ★ Excellent agreement between low-m_T and high-m_T M_J shapes
- ★ Observed yields agree with predictions largest pull due to apparent downward fluctuation in the data

CMS-SUS-19-007

SUSY interpretation

- ★ Excluding T1tttt for m_{gluino} < 2150 GeV for low m χ
- ★ T5tttt compliments by allowing the possibility of intermediate stop, $\Delta(m_{\text{stop}}, m\chi)$ is fixed to 175 GeV
- **★** T5tttt kinematics
 - * MET given by kinematics of 2-body instead of 3-body decay
 - → at low LSP masses boost picked up by top → MET is highly suppressed

Squarks highlights

- ★ Squark limits at low LSP mass now at ~ 1200-1300 GeV
 - complex decay chains or mass spectra compression can significantly lower these limits

H(Z)

section (pb)

5

Gluino highlights

- ★ Gluino limits at low LSP mass now at ~ 2000-2250 GeV depending on flavor
 - * Similar to squarks, mass compression can lead to large reduction in mass reach

Backup

MJ variable further info

Analysis binning: 4D

Residual correlation between ABCD variables

- $\star \kappa$ is a double-ratio correction factor, thus minimizing sensitivity to systematic mismodeling
- ★ Correction close to unity consistent with minimal correlation
- ★ Modeling of correlation checked in data control samples to derive systematics

How does each background category behave?

- ★ Background can be understood to comprise of two distinct populations!
- ★ Backgrounds with kappa ~ 1
 - ◆ primarily 2ℓ tt with "lost" lepton
 - true multi-v events
 - → m_T not constrained
 - → no reason for events at low and high m_T to have different kinematics
 - \rightarrow M_J at high and low m_T are the same
- ★ Backgrounds with kappa > 1
 - + 1ℓ tt with mismeasurement
 - fake MET contributes to bring events above m_T threshold
 - fake MET correlated with hadronic activity
 - \rightarrow high m_T events will have harder M_J distribution
 - → 1ℓ tt with additional v from hadronic decay
 - MET from additional ν must be large enough to bring event above m_T threshold
 - \rightarrow correlated with presence of high p_T jets
 - \rightarrow high m_T events will have harder M_J distribution

2l control region

- ★ 2ℓ ABCD constructed by replacing high-m_T
 1ℓ regions with events with 2ℓ
 - examined in bins of MET and N_{jets}
- **★** Events with $N_b \ge 2$ excluded due to high signal contamination
- ★ Good agreement between data and MC k's

example: $200 \le p_{\mathrm{T}}^{\mathrm{miss}} \le 350 \text{ GeV}$

5-6 jet control region

- ★ 5-6 jet ABCD constructed with same cuts except as main analysis regions except for N_{jets}
 - ◆ background composition similar to signal region → can test mismeasurement modeling
 - examined in bins of N_b
- **★** Lowest MET bin has the largest contribution from mismeasurement → serves to bound any mismodeling
 - intermediate MET bin provides additional validation
 - high MET bin excluded due to signal contamination
- \star Observed a ~ 3σ deviation in 2b consistent with fluctuation in data based on additional studies
 - set N_b uncertainty to 10%, 20% and 25% for 1b, 2b and \geq 3b, respectively

Summary of background systematic uncertainties

- ★ Uncertainties from 2ℓ region and 5-6 jet region combined as uncorrelated sources to arrive at total uncertainty
 - $+ N_{jets}$ uncertainty from 2ℓ CR → 9%
 - N_b uncertainty from 5-6j CR → 10%, 20%, and 25% for 1b, 2b, and \geq 3b, respectively
 - MET uncertainty from 2ℓ CR
 - low- M_J bins \rightarrow 15% and 21% for medium and high MET, respectively
 - high- M_J bins \rightarrow 19% and 30 % for medium and high MET, respectively

Total uncertainty ranges between 13% and 39%

Bin	$200 < p_{\mathrm{T}}^{\mathrm{miss}} \le 350 \; \mathrm{GeV}$			$350 < p_{\mathrm{T}}^{\mathrm{miss}} \leq 500 \; \mathrm{GeV}$			$p_{\mathrm{T}}^{\mathrm{miss}} > 500 \; \mathrm{GeV}$		
	1 b	2 b	≥ 3b	1 b	2 b	≥ 3b	1 b	2 b	≥ 3b
$\overline{\text{low-}M_{I}(\text{R4A})}$	13%	22%	27%	20%	27%	31%	25%	30%	34%
high- M_J (R4B)	13%	22%	27%	22%	28%	32%	32%	36%	39%

Signal systematic uncertainties

- ★ Larger uncertainties for more compressed points since acceptance relies more on tails of distributions
- \star range over high MET bins (large Δ m) & over high Njets bins (small Δ m)

Carrena	Relative uncertainty [%]			
Source	T1tttt(2100,100)	T1tttt(1900,1250)		
MC sample statistics	3–8	7–15		
Renormalization and factorization scales	1–2	2–4		
Fast sim. p_T^{miss} resolution	1–2	1–5		
Lepton efficiency	7–9	4–5		
Trigger efficiency	1	1		
b tagging efficiency	2–8	2–8		
Mistag efficiency	1	1–3		
Jet energy corrections	1–5	2–11		
Initial-state radiation	1–7	1–10		
Jet ID	1	1		
Pileup	1–2	1–4		
Integrated luminosity	2.5	2.5		

