Beyond the Standard Model searches at HERA

O. Turkot On behalf of H1

Pentaquarks searches
 Isolated and multi- leptons
 General contact interactions and leptoquarks
 BSM weak couplings

6 August 2019

On behalf of H1 and ZEUS Collaborations

HERA - world's only high energy e[±]p collider

HERA operated during 1992 - 2007 with:

p energies of 920, 820, 575 and 460 GeV.

~0.5 fb⁻¹ of luminosity were recorded

2015 - early 2016:

~3.5 σ excess of the di-photon events for the resonance mass:

 $m_X = 750 \sim 760 \text{ GeV}$

observed in both, Atlas and CMS, experiments.

2003 - 2004:

~4 σ evidence at CERN SPS

uussd

2003 - 2004:

~4 σ evidence at CERN SPS

Oleksii Turkot

Beyond the Standard Model searches at HERA

uussd

2003 - 2004:

~4 σ evidence at CERN SPS

Oleksii Turkot

Oleksii Turkot

Oleksii Turkot

2004 - 2005:

No Θ⁺ or Ξ⁻⁻ observed by HERA-B <u>Phys. Rev. Lett. 93, 212003 (2004)</u>

2004 - 2005:

Combinations per 10 MeV

2004 - 2005:

Oleksii Turkot

2006 - 2016:

No Θ^+ peak observed by Belle, later CLAS analysis and several other experiments

2006 - 2016:

No Θ^+ peak observed by Belle, later CLAS analysis and several other experiments

2006 - 2016:

No Θ^+ peak observed by Belle, later CLAS analysis and several other experiments

Oleksii Turkot

Beyond the Standard Model searches at HERA

No Θ^+ peak observed by **ZEUS** in **HERA II** data Phys. Lett. B 759 (2016) 446

2015 - present:

Discovery of the **P**+_c (cc̄uud) pentaquark states at LHCb

Oleksii Turkot

Isolated Leptons

Isolated high-P_T lepton, high P_T^{miss} and P_T^X

anomalous single-top production

In case of events excess, some of the possible interpretations:

stop production in the R-parity breaking SUSY

Isolated Leptons

Bin-to-bin combination of the data from H1 and ZEUS - 1 fb⁻¹ of data.

Multi-Leptons

Bin-to-bin combination of the data from H1 and ZEUS - 1 fb⁻¹ of data.

HERA inclusive DIS data combination

- 2927 data point combined to 1307
- up to 8 data points combined to 1
- impressive improvement of precision due to:
 - increased statistics
 - better understanding of systematics
 - cross-calibration of the data from two experiments

Eur. Phys. J. C75 (2015), No. 12, 580

QCD analysis of the combined DIS data

Parton Density Functions

Parameterised at the starting scale of $Q^{2}_{0} = 1.9 \text{ GeV}^{2}$: $xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{T_g}$ $xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2)$ $xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}$ $x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+x)^{C_{\bar{U}}} (1+x)$ $x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}$ fixed or calculated by the sum-rules

set equal

Evolve to any $Q^2 > Q^{2_0}$ with DGLAP. Eur. Phys. J. C75 (2015), No. 12, 580

$$\frac{B'_g(1-x)^{C'_g}}{\bot E - x^2}$$

$$D_{\bar{U}}x)$$

of the HERA data - global **QCD analysis** which includes a possible contribution from BSM processes.

BSM signal in the data could affect the PDF fit and result in **biased PDFs**.

> This could affect all available highprecision PDFs (MMHT2014, NNPDF 3.0, etc.) - they all include HERA DIS data in the fit.

> Proper procedure for a BSM analysis

$< R_q^{2 Data}$) (%) $Prob(R_q^{2 Fit})$

Simultaneous PDF + R_q analysis

Wide kinematic range of the HERA data allows determination of PDFs simultaneously with BSM searches.

For example - quark form-factor:

Frequentist analysis - generate MC replicas and simultaneously fit PDFs and Rq:

$$\mu^{i} = \left[m_{0}^{i} + \sqrt{\delta_{i,stat}^{2} + \delta_{i,uncor}^{2}} \cdot \mu_{0}^{i} \cdot r_{i}\right] \cdot \left(1 + \sum_{j} \gamma_{j}^{i} \cdot r_{j}\right)$$

Phys. Lett. B757 (2016), 468-472

Beyond the Standard Model searches at HERA

Entries

220

200

180

160

140

120 100

> **80**E **60**E

20È

10

5

15

ZEUS

Conclusions from simultaneous analysis

Pseudodata generated for values of $\mathbf{R}^{2}_{q} = \mathbf{R}^{2}_{q}^{\text{True}}$

BSM signal in the data affects the PDF fit and results in **biased PDFs**.

Use of the **biased PDFs** in the BSM analysis results in overestimated limits.

Pseudodata generated for value of $R^2_q = 0$

General contact interactions and leptoquarks

Low-energy effects due to physics at much higher energy scales can be described with the four-fermion contact interactions (CI): In the limit of heavy leptoquarks ($M_{LQ} \gg \sqrt{s}$), the effect of *s*- and *t*-channel LQ exchange is equivalent to a vector-type *eeqq* CI with the coupling of:

All up- or down-type quarks were assumed to have the same contact-interaction couplings:

$$\eta_{kj}^{eu} = \eta_{kj}^{ec} = \eta_{kt}^{et}$$
$$\eta_{kj}^{ed} = \eta_{kj}^{es} = \eta_{kt}^{eb}$$

Beyond the Standard Model searches at HERA

$$\eta_{kj}^{eq} = a_{kj}^{eq} \left(\frac{\lambda_{LQ}}{M_{LQ}}\right)^2$$

ZEUS

General contact interactions

Phys. Rev. D 99 (2019) 092006 Phys.Lett.B705 (2011) 52 Phys. Lett. B 591 (2004) 23-41

			95% C.L. lower coupling limits (TeV-2)							
			H1 + ZEUS data (1 fb ⁻¹)			H1(446 pb ⁻¹)		ZEUS (128 pb ⁻¹)		
Coupling structure		р _{SM}	Measured		Expected		Measured		Measured	
Model	$[\varepsilon_{LL}, \varepsilon_{LR}, \varepsilon_{RL}, \varepsilon_{RR}]$	(%)	Λ^-	Λ^+	Λ-	Λ^+	Λ-	Λ^+	Λ^-	Λ^+
LL	[+1, 0, 0, 0]	7.0	12.8	4.5	5.9	6.3	4.0	4.2	1.7	2.7
RR	[0, 0, 0,+1]	5.9	14.7	4.4	5.7	6.1	3.9	4.4	1.8	2.7
LR	[0,+1, 0, 0]	34	4.7	5.5	5.7	6.3	3.7	4.8	2.4	3.6
RL	[0, 0,+1, 0]	42	5.0	5.3	5.6	6.5	3.8	4.8	2.7	3.5
VV	[+1,+1,+1,+1]	25	13.9	9.0	11.2	11.4	7.2	5.6	6.2	5.4
AA	[+1, -1, -1, +1]	0.6	15.7	4.2	7.9	7.8	5.1	4.4	4.7	4.4
VA	[+1, -1, +1, -1]	2.5 (5.8)	3.6	3.5	4.2	4.2	3.6	3.8	3.3	3.2
X1	[+1, -1, 0, 0]	0.4	_	3.2	5.4	5.5			3.6	2.6
X2	[+1, 0,+1, 0]	24	10.4	6.4	7.8	8.3			3.9	4.0
X3	[+1, 0, 0, +1]	7.3	17.9	6.2	8.3	8.7	5.1	5.3	3.7	3.6
X4	[0,+1,+1, 0]	39	7.2	7.5	8.0	8.6	4.8	5.4	5.1	4.8
X5	[0,+1, 0,+1]	27	9.5	6.4	7.7	7.7			4.0	4.0
X6	[0, 0,+1,-1]	0.3	3.1	_	5.3	5.5			2.5	3.5

For AA, VA, X1 and X6 models QCD+CI fits provide improved description of the data, with up to 2.7 σ difference.

Oleksii Turkot

Leptoquarks

Phys. Rev. D 99 (2019) 092006 Phys.Lett.B705 (2011) 52 Phys. Lett. B 591 (2004) 23-41

			95% C.L. λ_{LQ}/M_{LQ} upper limits (TeV-1)						
		рѕм	H1 + ZEUS	data (1 fb-1)	H1(446 pb ⁻¹)	ZEUS (128 pb ⁻¹)			
Model	Coupling structure	(%)	Measured	Expected	Measured	Measured			
S_o^L	$a_{LL}^{eu} = +rac{1}{2}$	9.0	0.28	0.56	0.91	1.64			
S_o^R	$a_{RR}^{eu} = +\frac{1}{2}$	5.5	1.03	0.72	0.91	1.79			
\widetilde{S}^R_o	$a_{RR}^{ed} = +\frac{1}{2}$	1.8	—	1.71	2.44	3.70			
$S^L_{rac{1}{2}}$	$a_{LR}^{eu} = -rac{1}{2}$	43	0.83	0.76	1.15	1.20			
$S^R_{rac{1}{2}}$	$a_{RL}^{ed} = a_{RL}^{eu} = -\frac{1}{2}$	39	1.04	0.92	1.69	1.89			
$\widetilde{S}^L_{rac{1}{2}}$	$a_{LR}^{ed} = -\frac{1}{2}$	38	1.66	1.39	1.52	2.33			
S_1^L	$a_{LL}^{ed} = +1, a_{LL}^{eu} = +\frac{1}{2}$	< 0.01	1.18	0.62	1.41	1.92			
V_o^L	$a_{LL}^{ed} = -1$	0.5	—	0.44	0.94	1.82			
V_o^R	$a_{RR}^{ed} = -1$	1.8	1.47	0.99	1.10	2.13			
\widetilde{V}^R_o	$a_{RR}^{eu} = -1$	5.5	0.18	0.53	0.74	1.15			
$V^L_{rac{1}{2}}$	$a_{LR}^{ed} = +1$	38	1.19	1.29	1.96	2.13			
$V^R_{\frac{1}{2}}$	$a_{RL}^{ed} = a_{RL}^{eu} = +1$	39	0.67	0.57	0.69	1.01			
$\widetilde{V}^L_{rac{1}{2}}$	$a_{LR}^{eu} = +1$	43	0.59	0.49	0.63	0.94			
V_1^L	$a_{LL}^{ed} = -1, a_{LL}^{eu} = -2$	32	0.41	0.25	0.54	0.81			

For S_1^L and V_0^R models the difference from SM predictions is about 4σ and 2σ , respectively.

Oleksii Turkot

BSM weak couplings

Oleksii Turkot

Beyond the Standard Model searches at HERA

e+___

p→

$$W_{2}^{-} = x \left(\rho_{CC,eq}^{\prime 2} \rho_{CC,eq}^{2} U + \rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} \overline{D} \right)$$

$$V_{2}^{+} = x \left(\rho_{CC,eq}^{\prime 2} \rho_{CC,eq}^{2} \overline{U} + \rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} D \right)$$

$$V_{2}^{+} = x \left(\rho_{CC,eq}^{\prime 2} \rho_{CC,eq}^{2} U - \rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} \overline{D} \right)$$

$$W_{3}^{-} = x \left(\rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} D - \rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} \overline{D} \right)$$

$$xW_{3}^{+} = x \left(\rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} D - \rho_{CC,e\overline{q}}^{\prime 2} \rho_{CC,e\overline{q}}^{2} \overline{U} \right)$$

Scale dependance of ρ'_{NC} , κ'_{NC} and ρ'_{CC}

For the first time the scale dependence of ρ'_{NC} , κ'_{NC} and ρ'_{CC} has been studied:

No significant deviation from the SM expectation is observed

Oleksii Turkot

Beyond the Standard Model searches at HERA

Eur.Phys.J.C78 (2018), 777

Summary

Experiments at HERA have a rich history of BSM searches.

Standard Model provides a good description of the HERA data, though some interesting effects are seen and studied.

> > Wide kinematic range of the HERA data provides an unique opportunity to perform the simultaneous BSM and PDF analyses.

Oleksii Turkot

Beyond the Standard Model searches at HERA

ZEUS

exp

RR

exp+mod

expected

HERA e[±]p 1994–2007 95% C.L. Limits