Observation of electroweak W[±]Z boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector and prospects for New Physics

Despina Sampsonidou, on behalf of the ATLAS Collaboration

Lepton Photon 2019, Toronto, August 6th 2019

Overview

Motivation: Vector Boson Scattering

- WZjj: Observation
 - Phys. Lett B 793 (2019) 469

Future Prospects in Effective Field Theories

Vector Boson Scattering

 Vector Boson Scattering: interaction of two vector bosons radiated from the initial-state quarks, yielding a final state with two bosons and two jets, VVjj, in a purely electroweak process

EWK production contains both VBS and non-VBS processes that cannot be dissociated

EWK VVjj non-VBS

EWK: QED<=6, QCD=0

Main background:
Diboson QCD production
in association with two jets

OCD VVii

Vector Boson Scattering: Motivation

- Vector boson scattering (VBS) are rare processes predicted by the Standard Model.
- The Higgs mechanism ensures unitarity up to ~1 TeV
 - VBS production mechanism can restore unitarity at higher C.M energies, where Higgs mechanism fails
- VBS allows indirect searches of New Physics by studying anomalous quartic gauge couplings (aQGC)

VBS phenomenology

μ+μ+jj Candidate Event

 $|\Delta v_{ii}| = 6.3$

 m_{ii} =2800 GeV

- VBS events at LHC have distinct event topology: VVjj
 - Two energetic jets with large di-jet mass (m_{jj}) and high rapidity separation
 - diboson system, centrally produced with respect to the two forward jets

Separation from Background (QCD production) σ (fb) per bin (m_., Δ y_.l): $\alpha_s^2 \alpha^4$ $\mathbf{QCD}^{\mathsf{y}} \text{ (fb) per bin (m}_{\mathsf{ii}}, \mathsf{I}\Delta \mathsf{y}_{\mathsf{ii}}\mathsf{I}) \colon \alpha_{\mathsf{s}}\alpha^{\mathsf{5}}$ σ (fb) per bin (m_{..}, Δ y_{..}l): α ⁶ **EWK** INTRE 0.04 -0.012 0.0035 0.035 0.003 0.01 0.03 0.0025 0.025 -0.008 0.006 2.5 0.002 0.02 0.015 0.0015 0.004 0.01 0.001 0.005 0.002 0.5 0.0005 600 700 800 m, (GeV) m, (GeV) m_{ii} (GeV) Ballestrero et al.

WZjj: Event Selection

- Exactly 3 leptons:
 - |n|<2.5</p>
 - $p_T^{I,Z}>15GeV$
 - $|M_{7}-M_{7}^{PDG}|<10 \text{ GeV}$
 - m_T^W>30 GeV
- At least 2 jets:
 - $|\eta| < 4.5$
 - opposite hemispheres
 - p_⊤^j>40GeV
 - m_{ii}>150 GeV

Background estimation

Irreducible Background

- WZjj-QCD, ZZjj, ttV: Use MC simulation and control regions to better constrain them
 - QCD: dominant background
 - ZZjj: second dominant background
- VVV, tZj: Use MC simulation to model them

Reducible Background

 Z+j, Zγ, ttbar, Wt, WW: Data-driven method based on the inversion of a global matrix containing the efficiencies and the misidentification probabilities for prompt and fake leptons

Signal Extraction

b-jets

- Given the small contribution of the WZjj-EWK to the signal,
- Multivariate discriminant is used to separate the signal from the backgrounds
- BDT trained in the signal region
- 15 variables chosen for their discrimination power between signal and all backgrounds

Cross section Measurement

- A maximum likelihood Simultaneous Fit is performed in the SR and 3 CRs
- Systematic uncertainties are taken into account as well as their correlations in the 4 fitted regions
- EWK-QCD interference is taken into account and treated as part of the signal
- Theory modelling: A global modelling uncertainty in the WZjj-EW signal template is estimated by comparing predictions of the BDT score distribution in the signal region from the Sherpa and MG MC event generators.
 - affects the shape of the BDT score distribution by at most 14% at large values of the BDT score.

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj–QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.9

 The electroweak production of W±Z bosons in association with two jets is measured with observed significance of 5.3σ.

$$\sigma_{WZjj-EW} = 0.57^{+0.14}_{-0.13} \text{ (stat.)} ^{+0.05}_{-0.04} \text{ (exp. syst.)} ^{+0.05}_{-0.04} \text{ (mod. syst.)} ^{+0.01}_{-0.01} \text{ (lumi.)} \text{ fb.}$$

Differential Cross Sections

- Events in the SR are also used to measure the WZjj differential production crosssection in the VBS fiducial phase space
- Data are unfolded using an Iterative Bayesian unfolding method
- Differential cross section measurements in variables sensitive to aQGCs for future studies: m_TWZ, Σp_TI, ΔΦ_(W,Z)

EFT Interpretations

- EFTs emerge as the tool to look for deviations from the standard model
- Unknown physics reachable at very high energies can be parametrized as extension of SM in an expansion in terms of Dim-6 (O_i) and Dim-8 (O_i)

$$L = L^{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j} \frac{c_j}{\Lambda^4} O_j$$

- aQGCs can be parametrized in terms of Dim-8 operators, by the assumption that the Dim-6 can already be constrained elsewhere
- Use EFT parameterization from Eboli, Gonzales-Garcia model
- Measurements of aQGC \rightarrow constrain the following operators: f_{S0}/Λ^2 , f_{S1}/Λ^2 , f_{T0}/Λ^2 , f_{T1}/Λ^2 , f_{T2}/Λ^2 , f_{M0}/Λ^2 , f_{M1}/Λ^2
- Plan to reinterpret the existing data using EFT MC predictions of D8 operators

Conclusions

- Run II of the LHC provides access to the Vector Boson Scattering
- First observation of Electroweak WZjj production with 36fb⁻¹
- Fiducial cross section measurement and differential cross sections provided
- EFTs is the tool to look for BSM effects and WZjj serves as a good candidate for the search
- With the full Run II data, improved cross section sensitivity can be achieved
- Better limits in Effective Field theory operators are expected with higher statistic and after combining the results with other final states

Thank you for your attention!

Backup: WZjj selection

Inclusive selection

Electron object selection			Muon object selection				
Selection	Baseline selection	Z selection	W selection	Selection	Baseline selection	Z selection	W selection
$p_{\rm T} > 5~{ m GeV}$ Electron object quality $ \eta^{ m cluster} < 2.47, \eta < 2.5$ LooseLH+BLayer identification $ d_0^{\rm BL}/\sigma(d_0^{\rm BL}) < 5$ $ \Delta z_0^{\rm BL} \sin \theta < 0.5~{ m mm}$ LooseTrackOnly isolation e -to- μ and e -to- e overlap removal	\frac{1}{2} \frac\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$p_{\rm T} > 5~{\rm GeV}$ $ \eta < 2.7$ Loose quality $ d_0^{\rm BL}/\sigma(d_0^{\rm BL}) < 3~(for~ \eta < 2.5~only)$ $\Delta z_0^{\rm BL}\sin\theta < 0.5~{\rm mm}~(for~ \eta < 2.5~only)$ FixedCutLoose isolation	\frac{1}{\sqrt{1}}	\frac{1}{\sqrt{1}}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
e -to-jets overlap removal $p_T > 15 \text{ GeV}$ Exclude $1.37 < \eta^{\text{cluster}} < 1.52$ MediumLH identification Gradient isolation		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	μ -jet Overlap Removal $p_{ m T} > 15~{ m GeV}$ $ \eta < 2.5$ Medium quality		\ \frac{1}{\sqrt{1}}	\frac{\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}\signt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
$p_T > 20 \text{ GeV}$ TightLH identification Unambiguous author			√ √ √	$p_T > 20 \text{ GeV}$ Tight quality Gradient isolation			\ \frac{}{}

ZZ veto	Less than 4 baseline leptons
N leptons	Exactly three leptons passing the Z lepton selection
Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 25 \text{ GeV (in 2015) or } p_{\rm T}^{\rm lead} > 27 \text{ GeV (in 2016)}$
Z leptons	Two same flavor oppositely charged leptons passing Z lepton selection
Mass window	$ M_{\ell\ell} - M_Z < 10 \text{ GeV}$
W lepton	Remaining lepton passes W selection
W transverse mass	$m_{\pi}^{W} > 30 \text{ GeV}$

VBS selection

WZjj Event selection				
Jet multiplicity	≥ 2			
$p_{\rm T}$ of two tagging jets	> 40 GeV			
$ \eta $ of two tagging jets	< 4.5			
η of two tagging jets	opposite sign			
m_{jj}	> 150 GeV			
WZjj b-CR				
$N_{b-{ m jet}}$	> 0			
WZjj QCD-CR				
$N_{b-\mathrm{jet}}$	= 0			
m_{jj}	= 0 < 500 GeV			
WZjj SR				
$N_{b- m jet}$	= 0			
m_{jj}	> 500 GeV			

14

Backup: BDT input variables

For the BDT, the classification is performed using 15 selected input variables, which can be classified in three categories:

> Variables related to the kinematics of the tagging jets:

- η_{j1} Δη(j1,j2)
- $\Delta \phi(j1,j2)$

Variables related to the kinematics of the vector bosons:

- $|y_{I,W}-y_{I,Z}|$
- $p_T^W p_T^Z$
- m_{τ}^{WZ}

Variables related to the kinematics of the vector bosons:

- $-\Delta R(j1,Z)$
- R_{pT}^{hard}