Boosted Dark Matter Searches via Dark-Strahlung

with Doojin Kim & Seodong Shin [1903.05087]

Jong-Chul Park

Large Volume v Experiments

❖ Various current/next generation large volume neutrino experiments

Large Volume v Experiments: Signals

- ❖ Essentially, neutrino experiments have been designed to detect rare EM signals induced by energetic neutrinos ≈ energetic neutral(≈weakly interacting) particles
- ❖ Therefore, they can be utilized to search for any energetic neutral new particles.
 - → Dark matter (DM) is a good candidate except its low kinetic energy!
- ❖ Non-relativistic $(v/c\sim10^{-3})$ weak-scale DM: $E_k \sim O(1 1000 \text{ keV})$ → $E_{recoil} \sim O(1 1000 \text{ keV})$

Large Volume v Experiments: Signals

- ❖ Essentially, neutrino experiments have been designed to detect rare EM signals induced by energetic neutrinos ≈ energetic neutral(≈weakly interacting) particles
- ❖ Therefore, they can be utilized to search for any energetic neutral new particles.
 - → Dark matter (DM) is a good candidate except its low kinetic energy!
- ❖ Non-relativistic $(v/c\sim10^{-3})$ weak-scale DM: $E_k\sim O(1-1000 \text{ keV})$ → $E_{recoil}\sim O(1-100 \text{ keV})$

What if DM has a relativistic velocity?

[Agashe, Cui, Necib, Thaler (2014)]

❖ Energetic DM coming from the universe with $E > E_{th}$ (~100 keV or larger) of *v*-detectors →

detectable in *v*-detectors!!

 $E_{th} \sim O (10 \text{ MeV})$

 $E_{th} \sim 5 \; \mathrm{MeV}$

Energetic/Boosted Dark Matter (DM)

Energetic DM coming from the universe

- ❖ Various scenarios: requirements → right DM relic abundance & DM boosting mechanism
 - ✓ Multi-component model: [Belanger & JCP, 1112.4491; Kong, Mohlabeng, JCP, 1411.6632; Kim, JCP, Shin, 1702.02944; Aoki & Toma, 1806.09154; more]
 - ✓ Semi-annihilation model: [D'Eramo & Thaler, 1003.5912]
 - ✓ Decaying multi-component DM: [Bhattacharya et al., 1407.3280; Kopp, Liu, Wang, 1503.02669; Cline et al., 1904.13396; Heurtier, Kim, JCP, Shin, 1905.13223; Kim; more]
 - ✓ High velocity (semi-relativistic) DM
 - Anti-DM from DM-induced nucleon decay in the Sun: [Huang & Zhao, 1312.0011]
 - Energetic cosmic-ray induced DM: [Yin, 1809.08610; Bringmann & Pospelov, 1810.10543;

Ema, Sala, Sato, 1811.00520]

✓ More ideas~

Energetic/Boosted Dark Matter (DM)

Energetic DM coming from the universe

✓ Multi-component model

$$m_0 \gg m_1$$

✓ Semi-annihilation model

$$m_\chi \gg m_X$$

Large E_k^{DM} due to mass gap or E_k^{CR} transfer

✓ Decaying multi-component DM $m_{\phi} \gg m_{\gamma}$

✓ Energetic cosmic-ray induced DM $E_{e^{\pm}, p^{\pm}, ...} \gg m_{\chi}$

Boosted DM Searches

Boosted DM (BDM) models: Receiving rising attention as an alternative scenario

Boosted DM Searches @ SK/COSINE-100

Boosted DM (BDM) models: Receiving rising attention as an alternative scenario

PHYSICAL REVIEW LETTERS **120**, 221301 (2018)

Editors' Suggestion

Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande

PHYSICAL REVIEW LETTERS 122, 131802 (2019)

Editors' Suggestion

First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

- ✓ Not restricted to primary physics goals
- ✓ Opened to other (unplanned) physics opportunities

Key Features & Issues

Minimal Two-component Scenario

- **Example model:** fermionic heavier(χ_0)/lighter(χ_1) DM + dark gauge boson(X)
- ❖ Electron & proton(even DIS) scattering channels are available. → Energetic recoil

Issue 1: Backgrounds

- ❖ Irreducible backgrounds: atmospheric-neutrino-induced events
- ❖ Neutral- & charged-current (even DIS) scattering channels are available. → Energetic recoil

Issue 2: Distinction from v Scenario

- ❖ (Light) BDM behaves like a neutrino.
- ❖ Signature-wise, it is challenging to distinguish the BDM scenario from the neutrino one.

Solution to the Issues: Basically DM vs ν

Issues: Avoidable by Subleading Process

- Distinctive signatures may arise (even under the minimal setup), once higher-order corrections are taken into account.
- ❖ A new BDM search strategy utilizing initial-/final-state dark gauge-boson radiation, i.e.

"Dark-Strahlung (DS)" from cosmogenic BDM

New BDM Search Strategy via Dark-Strahlung

- ✓ BDM usually behaves like v's, resulting in signatures which would be invoked by v's.
 - → A challenging task to verify that observed events are actually BDM-induced or induced by *v*'s coming from the decay/pair-annihilation of DM.
- \checkmark v's do not involve this sort of process, except negligible Z/W-strahlung.
 - → Additional observations in DS channel might serve a "milestone" in the field of BDM.
- ✓ Drawback: DS production cross-section is smaller than the leading-order (LO) contribution.

Dark-Strahlung vs. Leading-order: X-section

 $\bullet \sigma_{\rm DS}/\sigma_{\rm LO}[\%] (\chi_1 e^- \to \chi_1 e^- + X \text{ vs. } \chi_1 e^- \to \chi_1 e^-) \text{ in the } m_{\rm DM} - E_{\rm DM} \text{ plane}$

Dark-Strahlung vs. Leading-order: X-section

 $\bullet \sigma_{\rm DS}/\sigma_{\rm LO}$ [%] $(\chi_1 e^- \to \chi_1 e^- + X \text{ vs. } \chi_1 e^- \to \chi_1 e^-)$ in the $m_{\rm DM} - E_{\rm DM}$ plane

- ✓ DS events occurs more frequently in decreasing $m_{\rm DM}$ & m_X and increasing g_X & $E_{\rm DM}$ as expected in the QED bremsstrahlung.
- ✓ $\sigma_{\rm DS}/\sigma_{\rm LO}$ could be even O(10-20%) with large $E_{\rm DM}{\sim}0.1-1$ TeV.
- ✓ For cosmogenic BDM $E_{\rm DM} \sim 0.1$ TeV or larger is possible, while for beamproduced DM $E_{\rm DM} \lesssim O(10$ GeV).
- ✓ True potential of DS can be assessed with involving BGs.

Dark-Strahlung vs. Leading-order: Run-time

 T_{DS}/T_{LO} (Ratios of required run-time) to achieve 90% C.L. in the $m_{DM}-E_{DM}$ plane

- ✓ The simple LO process encounters enormous BGs in BDM searches.
- ✓ $T_{\rm DS}/T_{\rm LO}$ =0.5, 1, & 2 → dashed, solid, & dot-dashed curves, respectively
- ✓ $T_{\rm DS}/T_{\rm LO}=2$ means the DS channel requires twice more time than the LO channel.
- ✓ Even under mild BG contamination $(N_{BG}=10^3)$ in the LO, the DS channel remains rather competitive in a wide range of parameter space.

Experimental Sensitivities of DUNE: Dark-X

Experimental sensitivities of DUNE (90% C.L.) in the $m_X - \epsilon$ plane

- ✓ Major BG to the LO: based on a DUNE study [1512.06148]
- ✓ The DS channel is at least complementary to the LO.
- ✓ DS allows us to explore a wider parameter regions towards small m_X , large g_X (& larger $E_{\rm DM}$).

1)
$$E_{e^{\pm}}$$
 >30 MeV, 2) $\Delta\theta_{e-e^{\pm}}$ > 1°,

3) Scattering & X-decay vertices take place inside the detector.

Conclusion

- Rising interest in extended dark sector scenarios, especially Energetic DM
- > A new search channel for the cosmogenic BDM utilizing *Dark-Strahlung* (DS)
 - → The uniqueness of signature renders the search essentially background-free.
- > The **observation of DS** can be important evidence to **refute the hypothesis** that the **signals would be induced by** *v***'s** originating from the decay/pair-annihilation of halo dark-matter.
- > The DS channel can be complementary to or even surpassing the corresponding leading-order one.

Back-Up

Two-component Scenario

G. Belanger, **JCP** (2011)

 $x=m_{\chi_1}/T$

"Assisted Freeze-out" Mechanism

- ✓ Lighter relic χ_1 : hard to detect it due to small relic
 - $\star \chi_1$: Negligible, Non-relativistic **thermal** relic

Boosted DM (BDM) Models

$$\mathcal{L}_{\rm int} \ni -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + \underbrace{g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu} + \underbrace{g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu} + h.\,c.$$

Kim, **JCP** & Shin, PRL (2017) Giudice, Kim, **JCP**, Shin, PLB (2018)

$$\mathcal{L}_{\rm int} \ni (\mu_{\chi}/2)\bar{\chi}_2 \sigma^{\mu\nu} \chi_1 F_{\mu\nu} + h.c.$$

- \checkmark χ_2 : a heavier (unstable) dark-sector state
- ✓ Flavor-conserving → elastic scattering (eBDM)
- ✓ Flavor-changing → inelastic scattering (*i*BDM)

- ✓ Source: GC, Sun (capture), dwarf galaxies, etc.
- ✓ Mechanism: assisted freeze-out, semi-annihilation, decaying, cosmic-ray induced DM, etc.
- ✓ Portal: vector portal, scalar portal, etc.
- ✓ DM spin: fermionic DM, scalar DM, etc.
- ✓ *i*BDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.

BDM: Production & its Signatures

elastic scattering (eBDM)

[Agashe, Cui, Necib, Thaler (2014)]

inelastic scattering (iBDM)

p- or *e*-scattering (primary)

Decay (secondary)

Issue 2: Avoidable by iBDM Scenario

- ❖ *i*BDM=inelastic BDM: inelastic DM+BDM [Kim, **JCP** & Shin, PRL (2017)]
- Additional signatures from the decay of heavier unstable dark-sector state (or excited state) χ_2 at the expense of "minimalism" of underlying BDM models.

Dark Gauge Boson Radiation

- ❖ A dark gauge boson can radiate from SM fermions and/or dark-sector matter particles just like the ordinary QED bremsstrahlung.
 - \checkmark A'-strahlung: a dark gauge boson radiation of electron in beam-dump experiments
 - → suppressed by the kinetic mixing

[Bjorken, Essig, Schuster, Toro (2014)]

- ✓ Dark trident: beam-produced DM scatters off a target nucleus, emitting a dark gauge boson which subsequently disintegrates to a e+ & e- pair.
 - → similar to that of the ordinary neutrino trident [Gouva, Fox, Harnik, Kelly, Zhang (2018)]
- ✓ Related phenomenology was also studied at the LHC but no DM scattering.

[Gupta, Primulando, Saraswat (2015), Bai, Bourbeau, Lin (2015), Kim, Lee, Park, Zhang (2016)]

Dark-Strahlung at High E Colliders

- ✓ High E colliders (e.g., LHC): DM productions with $E_{\rm DM} \sim O(0.1 1 \, {\rm TeV})$ is possible.
- ✓ LHC searches for a dilepton resonance/a mono-Z jet + missing E_T induced by the DS process have been suggested.
- ✓ Even dark showering may be available at the LHC.
- \checkmark No primary DM scattering signals. Only secondary decay signals from emitted X's.

Issue 1: Backgrounds

Table 4.3: Atmospheric neutrino event rates including oscillations in $350\,\mathrm{kt}\cdot\mathrm{year}$ with a LArTPC, fully or partially contained in the detector fiducial volume.

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871

~40.2/yr/kt: may contain multi-track events

[DUNE CDR-Vol.2 (2015)]

	SK-I		SK-II		SK-III		SK-IV	
	Data	MC	Data	MC	Data	MC	Data	MC
FC sub-GeV								
single-ring								
e-like								
0-decay	2992	2705.4	1573	1445.4	1092	945.3	2098	1934.9
1-decay	301	248.1	172	138.9	118	85.3	243	198.4
π^0 -like	176	160.0	111	96.3	58	53.8	116	96.2
μ -like								
0-decay	1025	893.7	561	501.9	336	311.8	405	366.3
1-decay	2012	1883.0	1037	1006.7	742	664.1	1833	1654.1
2-decay	147	130.4	86	71.3	61	46.6	174	132.2
2-ring π^0 -like	524	492.8	266	259.8	182	172.2	380	355.9
FC multi-GeV								
single-ring								
$ u_e$ -like	191	152.8	79	78.4	68	54.9	156	135.9
$\overline{ u}_e$ -like	665	656.2	317	349.5	206	231.6	423	432.8
μ -like	712	775.3	400	415.7	238	266.4	420	554.8
multi-ring								
ν_e -like	216	224.7	143	121.9	65	81.8	175	161.9
$\overline{\nu}_e$ -like	227	219.7	134	121.1	80	72.4	212	179.1
μ -like	603	640.1	337	337.0	228	231.4	479	499.0

[Super-Kamiokande (2012)]

Single-track candidates: 32.4 + 8.8 = 41.2 / yr/kt, while total e-like events are 49.9 / yr/kt. (Note that SK takes e-like events with $E > \sim 10 \text{ MeV}$.)

⇒ Potential BGs for elastic scattering of BDM (eBDM)

Issue 1: Backgrounds → **Angular Cut**

❖ BDM is incoming ultra-relativistically!

- ✓ Final-state particle move very forward & the scattering angle of the recoil electron is typically less than $\sim 6^{\circ}$ at $E_{\text{recoil}} = 100$ MeV (minor model dependence)
 - → directionality measurable.
- ✓ Good angular resolution allows to isolate source regions, especially very good for point-like sources such as the Sun & dwarf galaxies.
- ✓ GC: too narrow cone (< ~10°) → loose
 too many BDM signal events!

Energetic DM @ Fixed Target Exps.

 $\Gamma_{A'} \sim \alpha_D$ or $(\epsilon^2 \alpha)$

NOVA/MicroBooNE/DUNE(Fermilab),
PEX/HPS/DarkLight/BDX (J-Lab),
SHiP(CERN), COHERENT(Oak Ridge)

Energetic DM: Beam vs. Cosmic BDM

Beam-produced DM

- ✓ The beam E is distributed to all produced particles. [P. deNiverville et al, 1609.01770]
 - → DM typically carries away $E \ll E_{\text{beam}}$: e.g., $E \sim 10 \text{ GeV for } E_{\text{beam}} = 120 \text{ GeV}$.
- More capable of controlling potential backgrounds:

e.g., on-/off-target beam data analysis in

MiniBooNE [MiniBooNE, 1807.06137]

Cosmogenic BDM

- ✓ Many mechanisms for producing BDM in the universe allow $E_{\rm DM} \gtrsim O(100~{\rm GeV})$.
 - → The DS contributions can be $\geq 0(10\%)$ in such high-E realm.
- ✓ Cosmic-frontier searches are easily plagued by cosmic-ray-induced BGs:
 e.g., v-induced (especially, surface detectors) not well under control & huge

Conventional vs. Nonconventional

- **Traditional approaches for DM searches:**
 - ✓ Weak-seale mass

✓ Weakly coupled

✓ Minimal dark sector

- ✓ Elastic seattering
- ✓ Non-relativistic

- * Modified approaches for DM searches:
 - ✓ Other mass scale: e.g. PeV, sub-GeV, MeV, keV, meV, ...
 - ✓ Various couplings to the SM: e.g.vector portal (dark photon), scalarportal, axion portal, ...
 - ✓ "Flavorful" dark sector: e.g. more

 DM species, unstable heavier darksector states, ...
 - ✓ Inelastic scattering
 - ✓ Relativistic

Large Volume v Experiments: Purposes

III Physics Potential

III.1. Neutrino Oscillation

- A. Accelerator based neutrinos
 - 1. J-PARC to Hyper-Kamiokande long baseline experim
 - 2. Oscillation probabilities and measurement channels
 - 3. Analysis overview
 - 4. Expected observables at the far detector
 - 5. Analysis method
 - 6. Measurement of CP asymmetry
 - 7. Precise measurements of Δm_{32}^2 and $\sin^2 \theta_{23}$
 - 8. Neutrino cross section measurements
 - 9. Searches for new physics
 - 10. Summary
- B. Atmospheric neutrinos
 - 1. Neutrino oscillation studies (MH, θ_{23} od
 - 2. Combination with Beam Neutrinos
 - 3. Exotic Oscillations And Other Topics
- C. Solar neutrinos
 - 1. Background estimation
 - 2. Oscillation studies
 - 3. Hep solar neutrino
 - 4. Summary

- III.2. Nucleon Decays
 - A. Nucleon decays
 - 1. Sensitivity to $p \to e^+ + \pi^0$ Decay
 - 2. Sensitivity study for the $p \to \overline{\nu}K^+$ mode
 - 3. Sensitivity study for other nucleon decay modes
 - B. Impact of Photocathode Coverage and Improved Photosensors
- III.3. Neutrino Astrophysics and Geophysics
 - A. Supernova

Other

Opportunities?

- 1. Supernova burst poutrinos
- High-energy neutrinos from supernovae with interactions with circumstellar material
- 3. Supernova relic neutrinos
- B. Dark matter searches
 - Search for WIMPs at the Galactic Center
 - for WIMPs from the Earth
 - physical neutrino sources
 - Ray Burst Jets and Newborn Pulsar Winds

[HK-TDR (2018)]

- atrinos from gravitational-wave sources
- Neutrino geophysics

❖ Mostly: neutrino physics → oscillation including CP,

supernova neutrino, neutrinos from dark matter, etc.

❖ Next: nucleon (proton) decay

Such experiments require big money (\gtrsim O(\$10⁸)) & man power (O(10² – 10³))