Boosted Dark Matter Searches via Dark-Strahlung

with Doojin Kim & Seodong Shin [1903.05087]

Jong-Chul Park

2019.08.06
Various current/next generation large volume neutrino experiments
Essentially, neutrino experiments have been designed to detect rare EM signals induced by energetic neutrinos ≈ energetic neutral(≈weakly interacting) particles.

Therefore, they can be utilized to search for any energetic neutral new particles.

→ Dark matter (DM) is a good candidate except its low kinetic energy!

Non-relativistic ($v/c \sim 10^{-3}$) weak-scale DM: $E_k \sim O(1 - 1000 \text{ keV})$ → $E_{\text{recoil}} \sim O(1-100 \text{ keV})$
Essentially, neutrino experiments have been designed to detect rare EM signals induced by energetic neutrinos ≈ energetic neutral(≈weakly interacting) particles.

Therefore, they can be utilized to search for any energetic neutral new particles.

Dark matter (DM) is a good candidate except its low kinetic energy!

Non-relativistic ($v/c\sim10^{-3}$) weak-scale DM: $E_k \sim O(1-1000 \text{ keV}) \Rightarrow E_{\text{recoil}} \sim O(1-100 \text{ keV})$

What if DM has a relativistic velocity?

Energetic DM coming from the universe with $E > E_{th}$ (~100 keV or larger) of ν-detectors \Rightarrow detectable in ν-detectors!!
Various scenarios: requirements ➔ right DM relic abundance & DM boosting mechanism

- **Multi-component model:** [Belanger & JCP, 1112.4491; Kong, Mohlabeng, JCP, 1411.6632; Kim, JCP, Shin, 1702.02944; Aoki & Toma, 1806.09154; more]

- **Semi-annihilation model:** [D’Eramo & Thaler, 1003.5912]

- **Decaying multi-component DM:** [Bhattacharya et al., 1407.3280; Kopp, Liu, Wang, 1503.02669; Cline et al., 1904.13396; Heurtier, Kim, JCP, Shin, 1905.13223; Kim; more]

- **High velocity (semi-relativistic) DM**
 - Anti-DM from DM-induced nucleon decay in the Sun: [Huang & Zhao, 1312.0011]
 - Energetic cosmic-ray induced DM: [Yin, 1809.08610; Bringmann & Pospelov, 1810.10543; Ema, Sala, Sato, 1811.00520]

- **More ideas~**
Energetic DM coming from the universe

- Multi-component model
 \[m_0 \gg m_1 \]

- Semi-annihilation model
 \[m_\chi \gg m_\chi \]

- Decaying multi-component DM
 \[m_\phi \gg m_\chi \]

- Energetic cosmic-ray induced DM
 \[E_{e^\pm,p^\pm,...} \gg m_\chi \]
Boosted DM Searches

Boosted DM (BDM) models:
Receiving rising attention as an alternative scenario
Boosted DM (BDM) models: Receiving rising attention as an alternative scenario

Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande

First Direct Search for Inelastic Boosted Dark Matter with COSINE-100

- Not restricted to primary physics goals
- Opened to other (unplanned) physics opportunities
Key Features & Issues
Example model: fermionic heavier(χ_0)/lighter(χ_1) DM + dark gauge boson(X)

Electron & proton(even DIS) scattering channels are available. ➔ Energetic recoil
Issue 1: Backgrounds

- **Irreducible backgrounds**: atmospheric-neutrino-induced events
- **Neutral- & charged-current (even DIS) scattering channels are available.** ➔ **Energetic recoil**
(Light) BDM behaves like a neutrino.

Signature-wise, it is challenging to distinguish the BDM scenario from the neutrino one.
Solution to the Issues:

Basically DM vs ν
Distinctive signatures may arise (even under the minimal setup), once higher-order corrections are taken into account.

A new BDM search strategy utilizing initial-/final-state dark gauge-boson radiation, i.e.

“Dark-Strahlung (DS)” from cosmogenic BDM
BDM usually behaves like \(\nu\)'s, resulting in signatures which would be invoked by \(\nu\)'s.

- \textbf{A challenging task} to verify that observed events are actually \textit{BDM-induced} or induced by \(\nu\)'s coming from the decay/pair-annihilation of DM.

- \(\nu\)'s do not involve this sort of process, except negligible \(Z/W\)-strahlung.

- \textbf{Additional observations in DS channel} might serve a “milestone” in the field of BDM.

- \textbf{Drawback}: DS production cross-section is smaller than the leading-order (LO) contribution.
Dark-Strahlung vs. Leading-order: X-section

\[\sigma_{DS}/\sigma_{LO}[^\%] (\chi_1 e^- \rightarrow \chi_1 e^- + X \text{ vs. } \chi_1 e^- \rightarrow \chi_1 e^-) \text{ in the } m_{DM} - E_{DM} \text{ plane} \]
\(\sigma_{\text{DS}}/\sigma_{\text{LO}}[\%] \) \((\chi_1 e^- \rightarrow \chi_1 e^- + X \text{ vs. } \chi_1 e^- \rightarrow \chi_1 e^-)\) in the \(m_{\text{DM}} - E_{\text{DM}}\) plane

- DS events occur more frequently in decreasing \(m_{\text{DM}}\) & \(m_X\) and increasing \(g_X\) & \(E_{\text{DM}}\) as expected in the QED bremsstrahlung.

- \(\sigma_{\text{DS}}/\sigma_{\text{LO}}\) could be even \(O(10 - 20\%)\) with large \(E_{\text{DM}} \sim 0.1 - 1\) TeV.

- For cosmogenic BDM \(E_{\text{DM}} \sim 0.1\) TeV or larger is possible, while for beam-produced DM \(E_{\text{DM}} \lesssim O(10\) GeV\).

- True potential of DS can be assessed with involving BGs.
Dark-Strahlung vs. Leading-order: Run-time

- T_{DS}/T_{LO} (Ratios of required run-time) to achieve 90% C.L. in the $m_{DM} - E_{DM}$ plane

- The simple LO process encounters enormous BGs in BDM searches.

- $T_{DS}/T_{LO} = 0.5, 1, \& 2 \Rightarrow$ dashed, solid, & dot-dashed curves, respectively

- $T_{DS}/T_{LO} = 2$ means the DS channel requires twice more time than the LO channel.

- Even under mild BG contamination ($N_{BG}=10^3$) in the LO, the DS channel remains rather competitive in a wide range of parameter space.
Experimental Sensitivities of DUNE: Dark-X

- **Experimental sensitivities** of DUNE (90% C.L.) in the $m_X - \epsilon$ plane

- Major BG to the LO: based on a DUNE study [1512.06148]

- The DS channel is at least complementary to the LO.

- DS allows us to explore a wider parameter regions towards small m_X, large g_X (& larger E_{DM}).

DUNE cuts
1) $E_{e^\pm} > 30$ MeV, 2) $\Delta \theta_{e^-e^+} > 1^\circ$, 3) Scattering & X-decay vertices take place inside the detector.
Rising interest in extended dark sector scenarios, especially Energetic DM

A new search channel for the cosmogenic BDM utilizing Dark-Strahlung (DS)

The uniqueness of signature renders the search essentially background-free.

The observation of DS can be important evidence to refute the hypothesis that the signals would be induced by ν's originating from the decay/pair-annihilation of halo dark-matter.

The DS channel can be complementary to or even surpassing the corresponding leading-order one.

Thank you
Back-Up
Two-component Scenario

G. Belanger, *JCP* (2011)

Diagram:
- Dominant relic: χ_0
- Heavy DM
- Freeze-out first

- Light DM
- Freeze-out later

Thermal relic: $Y_i = n_i / s$

- Y_0
- Y_1

"Assisted Freeze-out" Mechanism

- Heavier relic χ_0: hard to detect it due to tiny coupling to SM
- Lighter relic χ_1: hard to detect it due to small relic

χ_1: Negligible, Non-relativistic **thermal** relic
Boosted DM (BDM) Models

\[\mathcal{L}_{\text{int}} \ni -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu + g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu + \text{h. c.} \]

\[\mathcal{L}_{\text{int}} \ni \left(\frac{\mu_\chi}{2} \right) \bar{\chi}_2 \sigma^{\mu\nu} \chi_1 F_{\mu\nu} + \text{h. c.} \]

- \(\chi_2 \): a heavier (unstable) dark-sector state
- Flavor-conserving \(\rightarrow \) elastic scattering (eBDM)
- Flavor-changing \(\rightarrow \) inelastic scattering (iBDM)

- Various models conceiving BDM signatures
 - Source: GC, Sun (capture), dwarf galaxies, etc.
 - Mechanism: assisted freeze-out, semi-annihilation, decaying, cosmic-ray induced DM, etc.
 - Portal: vector portal, scalar portal, etc.
 - DM spin: fermionic DM, scalar DM, etc.
 - iBDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.

Kim, JCP & Shin, PRL (2017)
Giudice, Kim, JCP, Shin, PLB (2018)
BDM: Production & its Signatures

Benchmark: two-component DM scenario

\(\chi_0 \rightarrow \chi_1 \) becomes boosted \((\gamma_1 = m_0 / m_1)\)

\[F_{\chi_1} \propto \langle \sigma v \rangle_{\chi_0 \chi_0 \rightarrow \chi_1 \chi_1} m_0^2 \]

elastic scattering (eBDM)
[Agashe, Cui, Necib, Thaler (2014)]

inelastic scattering (iBDM)
[D. Kim, JCP, S. Shin (2016)]

Benchmark: two-component DM scenario

\(\chi_0 \rightarrow \chi_1 \) becomes boosted \((\gamma_1 = m_0 / m_1)\)

\[F_{\chi_1} \propto \langle \sigma v \rangle_{\chi_0 \chi_0 \rightarrow \chi_1 \chi_1} m_0^2 \]

elastic scattering (eBDM)
[Agashe, Cui, Necib, Thaler (2014)]

inelastic scattering (iBDM)
[D. Kim, JCP, S. Shin (2016)]
Issue 2: Avoidable by iBDM Scenario

- **iBDM=inelastic BDM**: inelastic DM+BDM [Kim, JCP & Shin, PRL (2017)]

- **Additional signatures** from the decay of heavier unstable dark-sector state (or excited state) \(\chi_2 \) at the expense of “minimalism” of underlying BDM models.
A dark gauge boson can radiate from SM fermions and/or dark-sector matter particles just like the ordinary QED bremsstrahlung.

- A'-strahlung: a dark gauge boson radiation of electron in beam-dump experiments
 - suppressed by the kinetic mixing [Bjorken, Essig, Schuster, Toro (2014)]

- Dark trident: beam-produced DM scatters off a target nucleus, emitting a dark gauge boson which subsequently disintegrates to a e^+ & e^- pair.
 - similar to that of the ordinary neutrino trident [Gouva, Fox, Harnik, Kelly, Zhang (2018)]

- Related phenomenology was also studied at the LHC but no DM scattering.
High E colliders (e.g., LHC): DM productions with $E_{DM} \sim O(0.1 - 1 \text{ TeV})$ is possible.

LHC searches for a dilepton resonance/a mono-Z' jet + missing E_T induced by the DS process have been suggested.

Even dark showering may be available at the LHC.

No primary DM scattering signals. Only secondary decay signals from emitted X’s.
Issue 1: Backgrounds

Table 4.3: Atmospheric neutrino event rates including oscillations in 350 kt · year with a LArTPC, fully or partially contained in the detector fiducial volume.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>fully contained electron-like sample</td>
<td>14,053</td>
</tr>
<tr>
<td>fully contained muon-like sample</td>
<td>20,853</td>
</tr>
<tr>
<td>partially contained muon-like sample</td>
<td>6,871</td>
</tr>
</tbody>
</table>

~$40.2/\text{yr/kt}$: may contain multi-track events

Single-track candidates: $32.4 + 8.8 = 41.2$ /yr/kt, while total e-like events are 49.9 /yr/kt. (Note that SK takes e-like events with $E > ~10 \text{ MeV}$.)

\Rightarrow Potential BGs for elastic scattering of BDM (eBDM)

[Super-Kamiokande (2012)]

[DUNE CDR-Vol.2 (2015)]
BDM is incoming ultra-relativistically!

Define "search cone" with the half-opening angle θ_c to reduce backgrounds in the LO channel.

- Final-state particle move very forward & the scattering angle of the recoil electron is typically less than $\sim 6^\circ$ at $E_{\text{recoil}} = 100$ MeV (minor model dependence)
 - directionality measurable.

- Good angular resolution allows to isolate source regions, especially very good for point-like sources such as the Sun & dwarf galaxies.

- GC: too narrow cone ($< \sim 10^\circ$) loose too many BDM signal events!
Energetic DM @ Fixed Target Exps.

- p/e beam dump → Z', DM production
- Original purpose: ν production (not all)
- Exps.: JSNS²/T2HK (J-PARC), NOVA/MicroBooNE/DUNE (Fermilab), PEX/HPS/DarkLight/BDX (J-Lab), SHiP (CERN), COHERENT (Oak Ridge)
Energetic DM: Beam vs. Cosmic BDM

Beam-produced DM

- The beam E is distributed to all produced particles. \[\text{[P. deNiverville et al, 1609.01770]}\]
- DM typically carries away $E \ll E_{\text{beam}}$:
 - e.g., $E \sim 10 \text{ GeV}$ for $E_{\text{beam}} = 120 \text{ GeV}$.
- More capable of controlling potential backgrounds:
 - e.g., on-/off-target beam data analysis in MiniBooNE \[\text{[MiniBooNE, 1807.06137]}\]

Cosmogenic BDM

- Many mechanisms for producing BDM in the universe allow $E_{\text{DM}} \gtrsim O(100 \text{ GeV})$.
- The DS contributions can be $\gtrsim O(10\%)$ in such high-E realm.
- Cosmic-frontier searches are easily plagued by cosmic-ray-induced BGs:
 - e.g., ν-induced (especially, surface detectors) not well under control & huge
Conventional vs. Nonconventional

- **Traditional approaches** for DM searches:
 - Weak-scale mass
 - Weakly-coupled
 - Minimal dark sector
 - Elastic scattering
 - Non-relativistic

- **Modified approaches** for DM searches:
 - Other mass scale: e.g. PeV, sub-GeV, MeV, keV, meV, ...
 - Various couplings to the SM: e.g. vector portal (dark photon), scalar portal, axion portal, ...
 - “Flavorful” dark sector: e.g. more DM species, unstable heavier dark-sector states, ...
 - Inelastic scattering
 - Relativistic
Mostly: neutrino physics \Rightarrow oscillation including CP, supernova neutrino, neutrinos from dark matter, etc.

Next: nucleon (proton) decay

Such experiments require big money ($\approx O(10^8))$ & man power ($O(10^2 - 10^3)$)