

Search for low-mass New Physics states at BaBar

Bob Kowalewski on behalf of the BABAR Collaboration

Is there New Physics at low mass?

- There is convincing astrophysical evidence for Dark Matter but its connection to particle physics is still unclear
- An interesting class of models suggests that DM might be light (a few GeV or less); these models are unconstrained by WIMP searches and can be explored in low-energy e^+e^- collisions and beam-dump experiments
- In these models, light DM couples to SM through a portal with a light mediator
 - Vector portal \rightarrow dark photon A'
- Non-minimal DM models allow for different couplings to the $2^{nd}/3^{rd}$ generation
 - Z' coupling to muons could contribute to $(g-2)_{\mu}$ anomaly, sterile neutrino abundance
- Tightly bound stable hexaquark (uuddss) could be DM candidate
 - Search for missing momentum recoiling against two strange antibaryons

DM searches at colliders

• DM interactions with SM particles can be explored in several ways ($time \rightarrow$)

- Need to observe something e.g. radiation off initial state or production of SM particles in final state
- At e^+e^- colliders Initial State Radiation (ISR) occurs in $\mathcal{O}(1\%)$ of collisions
- ISR results in a broad spectrum of CM energies, allowing searches for narrow mediators over a sizable mass range
- The ISR photon can be used to trigger the event by itself

BaBar detector and dataset

• Experiment collected $\int \mathcal{L} \, dt \approx 550 \, \mathrm{fb^{-1}}$ between 1999 and 2008, mostly on $\Upsilon(4S)$ resonance at $10.58 \, \mathrm{GeV}$

• Asymmetric beam energies: CM is boosted. Good acceptance for final states with ISR off e^- beam

• Special run in 2007-08 with single photon trigger had $\int \mathcal{L} dt = 53 \text{ fb}^{-1}$; essential for searches with invisible final states

Dark photons – vector portal

- Victoria Subatomic
 Physics and Accelerator
 Research Centre
 VISPA
- Postulate that DM particles are charged under a new U(1) gauge symmetry in the dark sector. The spin-1 "dark photon" A' will then mix with SM photon (kinetic mixing [1]) with a strength ε
- A' has narrow width if dark sector coupling $\alpha_D < 1$ (used in search strategy)
- If $m_{\chi} < \frac{1}{2} m_{A'}$, dominant decay of A' is to DM pair $\chi \bar{\chi}$; look for monochromatic γ
- Search for $e^+e^- \rightarrow \gamma_{\rm ISR}$ + missing energy; requires single photon trigger

[1] P. Fayet, Phys. Lett. B 95, 285 (1980)P. Fayet, Nucl. Phys. B 187, 184 (1981)B. Holdom, Phys. Lett. B 166, 196 (1986)

Dark photon search in invisible final states [1]

- BaBar data in 2007-08 (at $\Upsilon(2S), \Upsilon(3S), \Upsilon(4S)$) includes single photon triggers with $E_{\gamma}^* > 1$ (2) GeV for data samples of 36 (53) fb⁻¹ (E_{γ}^* is energy in CM frame)
- Reject charged tracks, require $E_{\nu}^{*} > 1.5$ (3.0) GeV for high (low-) mass selection
- Construct BDT based on EMC, IFR quantities
- Determine recoil mass M_X^2 from e^+e^- beam particles and $\gamma_{\rm ISR}$ momenta
- Backgrounds are due to detector acceptance and inefficiency
 - at small M_X^2 mostly from $e^+e^- \rightarrow \gamma\gamma$
 - at large M_X^2 radiative Bhabha $(e^+e^- \to e^+e^-\gamma)$ are important

 $e^+e^- \rightarrow \gamma\gamma$ backround

6 August 2019 Kowalewski – LP2019

Dark photon search in invisible final states [2]

- Distributions of M_X^2 (from $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(4S)$) fitted simultaneously to background and peaking signal
- Background PDF shape determined on large sample of events that fail BDT; background normalization floats in fit to signal distributions
- Signal parameterized by Crystal Ball function; test values of $m_{A'}$ scanned from 0 to 8 GeV in increments of $\approx \sigma_m/2$ (166 steps)

Largest signal fit for $m_{A'}=6.21$ GeV; local (global) significance is 3.1 (2.6) σ

Dark photon search in invisible final states [3]

- Signal efficiency is $\sim 2-4\%$ and varies slowly with $m_{A'}$
- Systematic uncertainties from PDF shapes, efficiency determination
- Rules out dark photon coupling as explanation for $(g-2)_{\mu}$ anomaly

Muonic dark force

- Non-minimal model with dark Z' boson that couples only to 2^{nd} and 3^{rd} -generation leptons [1]
- Could account for $(g-2)_{\mu}$ discrepancy [2]
- Could increase cosmological sterile neutrino abundance [3]
- Coupling to muons can be searched for in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ in BaBar data
- Search is sensitive to any narrow $\mu^+\mu^-$ resonance

[1] He, Joshi, Lew, Volkas, Phys. Rev. D 43, 22 (1991); Phys. Rev. D 44, 2118 (1991)

[2] M. Pospelov, Phys. Rev. D 80, 095002 (2009)

[3] Shuve and Yavin, Phys. Rev. D 89, 113004 (2014)

Search for muonic dark force in [1]

- Simple final state require two pairs of opposite-charge tracks, at least two of which are identified as muons and veto events with $E_{\rm neutral} > 0.2~{\rm GeV}$
- Require $m(4\mu)$ to be within 0.5 GeV of CM energy and veto $\Upsilon(nS) \to \mu^+\mu^-$
- Tune analysis on 5% of data; use remaining $514~{\rm fb^{-1}}$ for search
- Consider dimuon reduced mass for all $\mu^+\mu^-$ combinations

$$m_R \equiv \sqrt{m_{\mu^+\mu^-}^2 - 4m_\mu^2}$$

Main background from QED 4-muon production

Search for muonic dark force in [2]

- Fit smooth background plus peak with width set by detector resolution (1-9 MeV) for $m_{Z'}$ values from $2m_\mu$ to 10 GeV
- No significant signal observed
- Efficiency 35-50%, rises with m_R .
- 90% CL Bayesian upper limits set on g' (assuming equal vector coupling of Z' to μ , τ and ν) using flat prior
- Search can be reinterpreted to constrain other new vectors and scalars that couple to muons

Search for stable six-quark state [1]

Victoria Subatomic
Physics and Accelerator
Research Centre
VISPA

- Stable (uuddss) $J^P = 0^+$ bound state S might be very tightly bound
 - \rightarrow Lifetime exceeds age of universe if $m(S) < m_p + m_e + m_\Lambda = 2054$ MeV [1]
- Such a state might (or might not) have cosmological implications [2]
- Not ruled out by existing searches; LQCD favors larger S mass but is uncertain
- Flavor singlet does not couple to pions; difficult to distinguish kinematically from a neutron in interactions hard enough to produce it
- Heuristic arguments suggest inclusive $\Upsilon(2S, 3S) \to SX$ BF at the level of 10^{-7}
- Dedicated search performed in $\Upsilon(2S, 3S) \to S\overline{\Lambda}\overline{\Lambda}$ final state (14, 28 fb⁻¹)

[1] G. R. Farrar, arXiv:1708.08951
[2] Gross, Polosa, Strumia, Urbano, Xue, PRD 98, 063005 (2018)
Kolb, Turner, arXiv:1809.06003
McDermott, Reddy, Sen, arXiv:1809.06765
G. R. Farrar, arXiv:1805.03723

Search for stable six-quark state [2]

University of Victoria

Victoria Subatomic

Physics and Accelerator

- Select two $\Lambda \to p\pi^-$ with identified protons and flight length $> 5\sigma$
- Veto on E_{extra} (excludes cone around S direction)
- Background from events with multiple strange baryons
- Fit determines recoil mass $m_{\rm rec}^2$; search for narrow peak from S
- Efficiency 7.2-8.2% depending on assumed S mass; 8% systematic
- 90% CL upper limit versus $m(S) \sim 1.3 \times 10^{-7}$

Stringent bounds on the existence of a stable, doubly strange six-quark state

Summary

Victoria Subatomic
Physics and Accelerator
Research Centre
VISPA

- BaBar data continues to provide competitive searches for new physics
- Dark photon portal investigated in invisible $A' \to \chi \bar{\chi}$ decays;
 - \rightarrow leading limits set for $0.05 < m_{A'} < 10 \text{ GeV}$
- Search for muonic dark force (Z' that couples only to $2^{\rm nd}/3^{\rm rd}$ generation) over range $2m_{\mu} < 2m_{Z'} < 10$ GeV;
 - \rightarrow generic limits on coupling g' down to 10^{-3}
- First search for stable, doubly strange (uuddss) sixquark state S in $\Upsilon(2S, 3S)$ decays;
 - → upper limit restricts possibilities for such a state

Backup

Future dark photon searches

Future searches at Belle II and beam-dump experiments (from Belle-II physics book, arXiv:1808.10567)

Dark photon search in visible final states

- Look for narrow $A' \to \ell^+ \ell^-$ resonances $(\ell = e, \mu)$ in $e^+ e^- \to \gamma_{\rm ISR} A'$
- Probes mass range of 20 MeV 10 GeV with low background
- Bayesian upper limits set on $e^+e^- \rightarrow \gamma A'$ cross-section

6 August 2019 Kowalewski – LP2019

Dark photon search in invisible final states

- Distributions of M_X^2 (from $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(4S)$) fitted simultaneously to background and peaking signal
- Background PDF shape determined on large sample of events that fail BDT; background normalization floats in fit to signal distributions
- Signal parameterized by Crystal Ball function; test values of $m_{A'}$ scanned from 0 to 8 GeV in increments of $\approx \sigma_m/2$ (166 steps)

Largest signal fit for $m_{A'} = 6.21 \text{ GeV}$; local (global) significance is 3.1 (2.6) σ

Dark photon search in invisible final states [2]

Example background event

• $e^+e^- \rightarrow \gamma \gamma \text{ event}$

no efficiency in muon system near sector boundaries

beam-energy photon shower

photon shower detected in muon system. Inefficiency produces single photon events.

azimuthal gaps between crystals align with collision point