Reactor Antineutrino Flux and Spectrum Measurement at Daya Bay

Zhe Wang

Tsinghua University

(On behalf of the Daya Bay Collaboration)

Aug. 6, 2019 at Lepton Photon 2019, Toronto

Recent Reactor Neutrino Research at Daya Bay

- Daya Bay observed θ_{13} with the best precision, and measured the effective-mass splitting Δm_{ee}^2 in $\bar{\nu}_e$ disappearance (See poster 283)
- Reactor anomaly: Detected neutrino flux is 5-6% lower than the recent Huber-Mueller prediction
- Observed $\bar{\nu}_e$ is significantly different than the H-M and other predictions

Is there any new physics? Or just complicated nuclear physics issue?

Reactor Antineutrino Flux and Spectra Measurement Roadmap in Daya Bay

- Flux and Spectrum Measurement Using 217-day Data PRL 116, 061801 (2016)
- Improved Flux and Spectrum Measurement Using 621-day Data Chinese Physics C 41, (2017) 013002
- Flux and Spectrum Evolution Study Using 1230-day Data PRL 118, 251801 (2017)
- Systematic-Improved Flux Measurement Using 1230-day Data arXiv:1808.10836 (2018), accepted by PRD
- Measurement of Antineutrino Spectra from ²³⁵U and ²³⁹Pu Using 1958-day Data

arXiv:1904.07812 (2019)

This Talk

Daya Bay Reactor Complex

Six commercial reactors

Pressurized Water Reactor

• 3.7 m height, 3 m diameter

• Thermal power of each reactor: 6x2.9 $\rm GW_{th}$ (~2x10²⁰ $\bar{\nu}_e/\rm s/\rm GW$)

Replace 1/3 (1/4) fuel every 18 (12) months

 Four major fission isotopes: ²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu (²³⁵U, ²³⁹Pu dominant)

Spent nuclear fuel storage

 Status update given by power plant (Reactor simulation: APPOLO2 or DRAGON)

Daya Bay Electron-antineutrino Detector

- Four near detectors (AD)
 Reactor-detector distance 300 500 m
- Each AD contains
 20 ton Gd-LS and 22 ton LS
- Inverse Beta Decay (IBD) on free proton (hydrogen)

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

Neutrino energy reconstruction

$$E_{\text{prompt}} = E_{e+} + E_{\gamma's}$$

 $E_{\bar{\nu}_e} = E_{\text{prompt}} + \bar{E}_n + 0.78 \text{ MeV}$

 Non-linear energy response corrected

Reactor Antineutrino Flux Measurement and Prediction

Yield: σ_f , Number of neutrinos per fission × IBD crossseciton

Measurement:
$$N_{\text{IBD}}(1-c^{\text{SNF}}) = \sigma_f \sum_{d=1}^{4} \sum_{r=1}^{6} \frac{N_d^P \varepsilon_{\text{IBD}} P_{sur}^{rd} N_r^f}{4\pi L_{rd}^2}$$

- N_{IBD} , # of detected IBDs
- c^{SNF} , spent nuclear fuel correction
- N_d^P , # of protons at detector d

- ϵ_{IBD} , IBD detection efficiency
- P_{sur}^{rd} , neutrino survival probability
- N_r^f , # of fissions of reactor r
- L_{rd} , reactor-detector distance

$$\sigma_f = \sum_{iso=1}^{4} f_{iso} \int (S_{iso}(E_{\nu}) + k_{iso}^{NE}(E_{\nu})) \sigma_{IBD}(E_{\nu}) dE_{\nu}$$

- f_{iso} , Fission fractions
- S_{iso} , Fission spectra (H-M)
- k_{iso}^{NE} , Non-equilibrium correction
- σ_{IBD} , IBD crosssection

Recent Development: Comprehensive Detector-Calibration and Model Study, Sub-percent Agreement

- Three calibration axes (Inside and outside Gd-LS region)
- Two sources (AmC and AmBe)
- Two kinetic energy ranges of neutrons (thermal and fast)

Total 59 source-calibration points

Proxy variables for MC-Data comparison $F = \frac{N([6,12] \text{ MeV})}{N([1.5,12] \text{ MeV})}$

- Three neutron scatter models: free gas, water, and polyethylene
- Four n-Gd capture gamma models:
 Geant4 native, Geant4 Phot. Eva.,
 Nuclear Data Sheets, Caltech

Total 20 simulated model combinations

Uncertainty Summary and Comparison to Model

Latest yield measurement result:

$$\sigma_f = (5.91 \pm 0.09) \times 10^{-43} \text{ cm}^2/\text{fission}$$

Ratio to model (Huber-Mueller)

$$0.946 \pm 0.020(exp)$$
 $0.952 \pm 0.014(exp)$ New

Average with other exp results

$$0.945 \pm 0.007(exp) \pm 0.023(model)$$

Reactor Evolution Analysis

Fission Fraction evolution in one cycle

Multi-asynchronous cores

²³⁹Pu fission fraction seen by EH1 and EH2 detectors

- Reactor flux and spectrum changes along with reactor burn-up
- We can study yield deficit and spectrum structure as a function of fission fraction
- The data is grouped into eight fission-fraction groups

Neutrino yield vs ²³⁹Pu fission fraction

- 1. Yield follows reactor running
- 2. The prediction is scaled according to an integral deficit
- 3. Measure yield changing rate

$$\sigma_f(F_{239}) = \bar{\sigma}_f + \frac{d\sigma_f}{dF_{239}} (F_{239} - \bar{F}_{239}) \stackrel{\text{g}}{=} 5.80 \atop \text{5.75} \atop \text{5.70}} 5.80 \atop \text{5.70}$$

4. A 3.1 σ difference in $\frac{d\sigma_f}{dF_{239}}$ is found vs model

Next:

- We have <u>eight</u> total yield measurements at eight fission fraction points
- The total yield is the different combinations of <u>four</u> fission isotopes
- Solve it after ²³⁸U and ²⁴¹Pu constrained

 $\sigma_f(t) = \sum_{\substack{i=235,238,\\239,241}} F_i(t) \sigma_i$

Measured neutrino yield for ²³⁵U and ²³⁹Pu

Test the yield deficit is solely from ²³⁵U prediction, Prob=0.68

Test the deficit is solely from ²³⁹Pu, Prob=0.00016

Test equal deficit from ²³⁵U and ²³⁹Pu, sterile neutrino, Prob=0.0049

IBD Prompt Spectrum Measurement in 1958 days

- 3.5 million IBD events
- Detector energy nonlinear response model uncertainty: 0.5%

- 1. The shape disagrees with the Huber-Mueller model prediction at 5.3σ
- 2. In the energy range of 4–6 MeV, the local discrepancy of 6.3σ

²³⁵U and ²³⁹Pu Spectra Decomposition

- The 3.5 M data are divided into 20 groups ordered by the ²³⁹Pu effective fission fraction in each week for each AD.
- Fit the ²³⁵U and ²³⁹Pu spectra, as two unknown arrays (52 unknowns).
- No sensitivity to ²³⁸U and ²⁴¹Pu and assign >10% uncertainties both on rate and shape as a prior
- Time-dependent contributions from non-equilibrium, SNF, nonlinear nuclides, and backgrounds are considered.

²³⁵U and ²³⁹Pu Spectra Measurement Result

IBD yield comparison

 235 U: data/H-M prediction =0.92±0.023(exp)±0.021(model) 239 Pu: data/H-M prediction =0.99±0.057(exp)±0.025(model)

Spectral comparison after normalizing the H_M model

Similar bump excess for 235 U and 239 Pu in [4, 6] MeV Significance of local deviations: 4σ for 235 U, only 1.2σ for 239 Pu due to larger uncertainty

Summary

- More statistics (>5 years) and better systematics (efficiency, energy response, etc.)
- Reactor antineutrino yield measurement is in tension with H-M prediction
- The yield evolution result is also in tension with H-M prediction
- First measurement of ²³⁵U and ²³⁹Pu antineutrino spectra

Stay tuned

Thank you for your attention. Questions and comments are welcome.