Fermilab Dus. Department of Science

- **Recent Cross Section Measurements from MicroBooNE**
- **Steven Gardiner for the MicroBooNE Collaboration**
- XXIX International Symposium on Lepton Photon Interactions at High Energies
- 6 August 2019

The MicroBooNE Experiment

- Liquid argon time projection chamber in the Booster Neutrino Beam at Fermilab (60-ton fiducial mass)
- Primary physics goals
 - Investigate the origin of the low energy excess (LEE) of electron-like events seen by MiniBooNE
 - Misidentified γ backgrounds?
 - Sterile neutrinos?
 - Measurements of neutrino-argon cross sections
 - Constrain interaction model systematics for precision oscillation measurements
- Detector R&D for future LArTPC efforts

The MicroBooNE Experiment

- Liquid argon time projection chamber in the Booster Neutrino Beam at Fermilab (60-ton fiducial mass)
- Primary physics goals
 - Investigate the origin of the low energy excess (LEE) of electron-like events seen by MiniBooNE
 - Misidentified γ backgrounds?
 - Sterile neutrinos?
 - Measurements of neutrino-argon cross sections
 - Constrain interaction model systematics for precision oscillation measurements
- Detector R&D for future LArTPC efforts

The MicroBooNE Experiment

- Liquid argon time projection chamber in the Booster Neutrino Beam at Fermilab (60-ton fiducial mass)
- Primary physics goals
 - Investigate the origin of the low energy excess (LEE) of electron-like events seen by MiniBooNE
 - Misidentified γ backgrounds?
 - Sterile neutrinos?
 - Measurements of neutrino-argon cross sections
 - Constrain interaction model systematics for precision oscillation measurements
- Detector R&D for future LArTPC efforts

Strengths of LArTPC technology

- Low thresholds & full angular coverage
- Tracking with mm scale spatial resolution
- Calorimetry
- Particle identification via dE/dx
 - e/ γ discrimination
 - Key advantage for oscillation studies using ν_e appearance
- A challenge: Limited cross section data for ⁴⁰Ar

v_{μ} CC inclusive: a foundation for other measurements

All three analyses described in this talk make use of the Pandora reconstruction toolkit <u>Eur. Phys. J. C (2018) 78:82</u>

https://github.com/PandoraPFA

$v_{\boldsymbol{\mu}}$ CC inclusive cross section

- Simple experimental signature: one reconstructed muon track
- $v_{\mu} + {}^{40}Ar \rightarrow \mu + anything$
 - Includes a mixture of underlying reaction modes
 - Comparison to model predictions tests many things at once
 - Provides selection for exclusive cross section measurements
- Complementary to previous CC inclusive measurement by ArgoNeuT at higher mean energy (9.6 GeV vs. 0.8 GeV)

https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1045-PUB.pdf

True Muon Momentum [GeV]

\sub Fermilab

7 08/06/2019 Steven Gardiner I Recent Cross Section Measurements from MicroBooNE

v_{μ} CC inclusive analysis: event selection & reconstruction

99.9% cosmic rejection

efficiency = 57.2% purity = 50.4%

- Often 20+ comics in each 4.8 ms TPC readout window
- Matching TPC and PMT signals key discrimination technique
- First use of multiple Coulomb scattering to measure p_μ
 - Contained and exiting muons included, treated on equal footing

- Details in JINST 12, P10010 (2017)

v_{μ} CC inclusive cross section results

- Double- and single-differential cross sections for argon (p_{μ} , $\cos\theta_{\mu}$)
 - https://arxiv.org/abs/1905.09694
- Binned in terms of reconstructed quantities (model comparisons via forward-folding)
- Tested against several generators: GENIE v2 & v3, GiBUU, NuWro
 - Most tension in high-momentum, forward-angle bins
 - Recent model improvements (local Fermi gas, RPA) favored
- Best χ^2 = 108.8 / 42 bins for GENIE v3 (versus χ^2 = 245.9 for GENIE v2)

Recent movement has been in the right direction

v_{μ} CC π^{0} cross section

- Resonant π^0 production
 - Other processes (e.g., FSIs) also contribute
 - Nearly always decays to 2γ
- Pion production important process to understand for DUNE
- Photons from NC π^0 can be mistaken for ν_e CC events
 - Similar nuclear effects for CC/NC
- Events selected from those that pass CC inclusive pre-filter

Validation of CCπ⁰ event selection

- Measurement performed using sample of 771 events with at least one reconstructed shower
 - Boosts statistics
 - 95% of BNB GENIE events with $1\gamma \ge 50$ MeV involve π^0 decays
- Mean diphoton invariant mass from 2-shower events agrees with π^0 hypothesis $(m_{\pi^0} = 135 \text{ MeV})$

 Cross-check using 224-event subsample with two showers

v_{μ} CC π^{0} cross section result

- Good agreement with generators across different nuclear masses
- Comparison of GENIE resonant pion production models
 - Rein-Sehgal (RS) with and without FSIs enabled
 - Berger-Sehgal (BS)
- NuWro
 - Adler-Rarita-Schwinger
 - Oset cascade for FSI
- First demonstration of fully-automated shower reconstruction in a LArTPC

https://arxiv.org/abs/1811.02700

Flux-integrated total cross section

 $\langle \sigma \rangle_{\Phi} = 1.9 \pm 0.2 \text{ (stat)} \pm 0.6 \text{ (syst)} \times 10^{-38} \text{ cm}^2 \text{ / Ar}$

Increasing nuclear target mass \rightarrow

口 Fermilab

Investigating protons in CC events

- Low thresholds and precise tracking capabilities of LArTPCs allow for detailed studies of hadronic activity
- Proton multiplicities, momenta, can help shed light on complicated nuclear effects
- **Example**: Angle between protons in CC2p events
 - Shaped by nuclear effects
 - "GENIE Default" = v2.12.10
 with empirical MEC
 - "GENIE Alternative" = v2.12.10 with Nieves CCQE & CCMEC

Generator disagreements here are large! MicroBooNE can help to resolve them

Preliminary data for the CC2p opening angle

Higher statistics coming soon to constrain these models!

A CC4p event!

Conclusion

- MicroBooNE is hard at work studying the physics of neutrino-argon interactions
 - v_{μ} CC inclusive cross section
 - $v_{\mu} CC \pi^0$ cross section
 - Proton multiplicities, momenta, angles
 - Many more results coming soon!
- Nuclear effects greatly complicate theoretical description of v-⁴⁰Ar scattering, but high precision needed to answer key neutrino physics questions
- Current & upcoming MicroBooNE cross section results will provide important model constraints for future oscillation measurements

Liquid argon time projection chambers (LArTPCs)

3D imaging of neutrino events

Cosmic rejection for v_{μ} CC inclusive selection

99.9% cosmic rejection

Often 20+ comics in each 4.8 ms TPC readout window!

A track is vetoed as a cosmic ray if . . .

it is through going in the detector

it is not compatible with the neutrino beam time (that lasts for only 1.6 μ s compared to the 4.8 ms readout window)

the track is a cosmic crossing the anode or cathode plane (for which we can reconstruct the t_0)

it is not compatible with the flash in the neutrino beam spill in terms of spatial position and light intensity

it is identified as entering and stopping (Bragg peak and/ or Michel tagging)

v_{μ} CC inclusive cross section results

‡ Fermilab

 v_{μ} CC inclusive cross section results

https://arxiv.org/abs/1905.09694

Fermilab

ArgoNeuT v_{μ} CC inclusive event distribution

μ⁻ ArgoNeuT Preliminary, 1.2e20 POT

Fit of shower start distances agrees with γ conversion length expected from simulation

😤 Fermilab

Proton candidate selection

- Proton tracks are identified by comparison to theoretical predictions from Geant4 simulations
- "Residual range" = distance between current hit and final hit
- PID metric used to test proton hypothesis
- Accepted candidates are contained and have *PID* < 88

23

$$PID \equiv \chi^{2}_{\text{proton}}/ndof = \frac{1}{ndof} \sum_{\text{hits}} \left[\frac{dE/dx}{\sigma_{dE/dx}} \text{measured} - \frac{dE/dx}{\sigma_{dE/dx}} \right]^{2}$$

Proton candidate selection

- Proton tracks are identified by comparison to theoretical predictions from Geant4 simulations
- "Residual range" = distance between current hit and final hit
- PID metric used to test proton hypothesis
- Accepted candidates are contained and have PID < 88

🚰 Fermilab

Nuclear effects in neutrino cross sections

μ

- Current accelerator-based oscillation measurements use nuclear targets (e.g., ⁴⁰Ar)
- Many complications compared to the free nucleon case
 - Fermi motion & binding energy
 - Short-range correlations
 - Meson exchange currents
 - Long-range correlations ("RPA")
 - Final state interactions
- Challenging theory & sparse data for ⁴⁰Ar
- MicroBooNE is providing data to improve our understanding of this physics

Nuclear effects in neutrino cross sections

- Current accelerator-based oscillation measurements use **nuclear** targets (e.g., ⁴⁰Ar)
- Many complications compared to the free nucleon case
 - Fermi motion & binding energy
 - Short-range correlations
 - Meson exchange currents
 - Long-range correlations ("RPA")
 - Final state interactions
- Challenging theory & sparse data for ⁴⁰Ar
- MicroBooNE is providing data to improve our understanding of this physics

