Latest results of the STEREO sterile neutrino search at ILL

Aurélie Bonhomme Max-Planck-Institut für Kernyphysik, Heidelberg on behalf of the STEREO collaboration

Latest results of the STEREO experiment

The Reactor Antineutrino Anomaly (RAA)

Motivation

Motivation of STEREO

Oscillation test

 $L/E \sim 10 \text{ m/3 MeV} \rightarrow \sim 1 \text{eV}$ sterile neutrino Two new parameters: $\sin^2(2\theta_{new})$ and Δm_{new}^2 Physical Review D 83, 073006 (2011). G. Mention et al.

- absolute flux normalization studies
- spectral shape studies

Latest results of the STEREO experiment

ILL research facility, Grenoble, France

- $\begin{array}{l} \text{Research reactor core 58 MW}_{th} \\ \rightarrow 10^{19} \ \bar{\nu}_e \ s^{-1} \end{array}$
- ✓ Compact core (40cm Ø)
- ✓ Highly 235 U enriched
- \checkmark Short baseline measurement: $8.9m < L_{core} < 11.1m$

Water channel 15 m.w.e overburden

- Surface-level experiment
- γ and neutron background from neighboring experiments

The STEREO detector

The STEREO detector

Data taking

- Phase-I: 66 days reactor ON 22 days reactor OFF
- Phase-II: 119 days reactor ON 211 days reactor OFF
- Data taking efficiency: 98.5%
- 14% dead-time after off-line cuts

Detector response

$$\overrightarrow{\textbf{E}_{\text{rec}}} = \textbf{M}^{-1} \overrightarrow{\textbf{Q}}$$

- $\overrightarrow{\mathbf{Q}}$ are the collected charges
- M^{-1} matrix constructed from regular monitoring: $m_{ij} = C_i \cdot L_{ji}$
 - ► C_i calibration coefficients (⁵⁴Mn radioactive source)
 - L_{ji} cross-talks between cells (cosmics)

Data/MC agreement of the reconstructed energy distribution for a 54 Mn calibration

Stability of the reconstructed energy monitored with cosmogenic events

Non-linearity effect (quenching) calibrated using a set of γ sources consistency tested over the whole ROI energy range

$\bar{\nu}_e$ signal selection and efficiency studies

- Mean cut efficiency: 61.4±0.9%
- Uncertainty dominated by neutron efficiency (delayed signal)

 $1.6 < ~\mathsf{E}_{prompt} ~<~ 7.1\,\mathsf{MeV}$

 $E_{delayed}\ >\ 4.5\ MeV$

Good agreement with Monte-Carlo in correlation time

3D model correcting discrepancies between data and MC at the % level

OUTLOOK: Improved Gd Gamma cascade simulation

• Delayed signal: gamma cascade from (n,γ) Gd \rightarrow correct modelization of primary importance for small detectors (low gamma containment)

 Improved simulation using FIFRELIN deexcitation of Gd isotopes using experimental data completed by nuclear models

Central position

Border position

Correlated background and $\bar{\nu}_e$ extraction

Pulse Shape Discrimination (PSD) for prompt signal

- electron recoils (γ , $\bar{\nu}_{e}$...)
- proton recoils (fast neutrons...)

Correlated background (cosmics):

- rate sensitive to environment
- stable in shape
- → build model from reactor-off data

 $\bar{\nu}_e {\rm signal}$ extraction from reactor-on data, with self-consistent background rescaling for each cell, energy bin

Oscillation analysis

Oscillation test: look for relative distortions of the $\bar{\nu}_e\text{-spectrum}$ between cells

- $\checkmark\,$ reduced systematics
- \checkmark prediction independent

$$\chi^{2} = \sum_{l}^{\text{Ncells}} \sum_{i}^{N_{E}} \left(\frac{\mathbf{D}_{\mathbf{I},i} - \phi_{\mathbf{i}} \mathbf{M}_{\mathbf{I},i}(\mu, \sigma, \alpha)}{\sigma_{l,i}} \right) \\ + \sum_{l}^{\text{Ncells}} \left(\frac{\alpha_{l}^{\text{NormU}}}{\sigma_{l}^{\text{NormU}}} \right)^{2} + \sum_{l}^{\text{Ncells}} \left(\frac{\alpha_{l}^{\text{EscaleU}}}{\sigma_{l}^{\text{EscaleU}}} \right)^{2} + \left(\frac{\alpha_{0}^{\text{EscaleC}}}{\sigma_{0}^{\text{EscaleC}}} \right)^{2}$$

D_{I,i}: measured spectra

 $M_{l,i}$: simulated spectra – takes into account cell differences, detection efficiencies etc. ϕ_i : free normalization parameter in energy bin i common for all cells

 $\{\alpha\}$: nuisance parameters taking account systematics (energy scale, uncorrelated norm)

Non oscillation hypothesis

- Very good agreement between data and non-oscillated model
- no sterile hypothesis not rejected

• minimized pull terms stay within $\pm 1\sigma$

Exclusion contours

- Phase-II results
- Raster-scan method
 Δχ² distributions estimated
 by MC pseudo experiments
- Best-fit value of the RAA (2011)
 rejected at 99 % C.L.

Conclusion and perspectives

STEREO detects $\bar{\nu}_e$ at 10 m from reactor core with high precision

- 43.4 kve detected in phase-II, 65.5k total
- ▶ 185 days ON, 233 days OFF show a very high stability of the background
- Initial RAA contours (2011) now mostly exluded, best-fit point at 99% C.L., with no signs of cell-to-cell systematics
- New work on n-Gd γ cascade simulation with FIFRELIN
 - \rightarrow arXiv:1905.11967 10⁷ cascades available on zenodo:2653787

Stay tuned! Perspectives in the near future:

- Upcoming oscillation analysis paper
- Absolute measurement of the pure ²³⁵U antineutrino flux
- Spectrum shape
- Statistics to be doubled by mid-2020

Spokesperson: David Lhuillier (CEA) Contact: david.lhuillier@cea.fr Website: http://stereo-experiment.org

Photo: Henri Pessa

The STEREO Collaboration

Detector response

$\overrightarrow{\textbf{E}_{rec}} =$	$M^{-1}\overrightarrow{Q}$
---------------------------------------	----------------------------

 $\overrightarrow{\mathbf{Q}}$ are the collected charges

 M^{-1} matrix constructed from regular monitoring: $m_{ij} = C_i \cdot L_{ji}$

- ► C_i calibration coefficients (⁵⁴Mn radioactive source)
- ► L_{ji} cross-talks between cells (cosmics)

Agreement MC/Data over the whole energy range

Non linearities calibration at the percent level

Background stability and spectrum

Background measured during **reactor-off periods**. 233 days available \rightarrow high-statistics for stability tests

Correlation of the IBD candidates rate with **atmospheric pressure**, for e-recoils et p-recoils

PSD distribution for two independent reactor-off dataset with different pool water level

Background shape and S/N ratio

Prompt background energy spectrum, decomposed into e-recoil, p-recoil and accidental components

 $1/L^2$ law

 $\bar{\nu}_{\rm e}$ flux as a function of the reactor distance

STEREO final sensitivity

Expected STEREO sensitivity after 300 days