

Searches for charged lepton flavor violating muon decay, MEG/MEG II experiment

Toshiyuki Iwamoto on behalf of the MEG II Collaboration ICEPP, the University of Tokyo 8 August 2019

Introduction

- Charged Lepton Flavor Violation
 - FV happens in quarks, neutral lepton (neutrinos)
 - Why has charged lepton flavor violation never been observed yet?
- μ→εγ
 - Long search history since the muon has been discovered.
 - In SM + neutrino oscillation, Br(μ→eγ)~10⁻⁵⁰
 - Many new physics scenarios (SUSY-GUT, SUSY-seesaw etc.) predict large Br(μ→eγ) through new particles in a loop diagram

Standard Model of Elementary Particles three generations of matter (fermions)

MEG/MEG II Experiment

MEG experiment

- MEG was designed to search for such regions where new physics like SUSY-GUT, SUSY-seesaw predict
- Real chance to discover new physics
- Data taking during 2009-2013
- MEG final results : Br(μ→eγ) upper limit
 4.2×10⁻¹³ @90%CL (sensitivity 5.3×10⁻¹³)
 (Eur. Phys. J. C 76(8),434(2016))

MEG II experiment

- An order of magnitude better sensitivity with three years data taking than MEG
- Target sensitivity: 6×10-14

CLFV experiments

μ-e conversion(DeeMe, COMET, Mu2e),
 μ→3e (Mu3e) experiments etc. will also come soon

Eur. Phys. J. C (2018)78:380

µ→eγ signal and background

Signal

 $E_{\gamma}, E_{e} \simeq 52.8 MeV$ $\Theta_{e\gamma}=180^{\circ}, T_{\gamma}=T_{e}$

Accidental Background

- Dominant BG
- Michel e+ + random γ from RMD/Annihilation in flight (AIF)

Radiative Muon Decay (RMD) Background

- e+-γ timing coincident
- Good for timing calib.

$N_{acc} \times R_{\mu}^2 \times \Delta E_{\gamma}^2 \times \Delta E_{e} \times \Delta \Theta_{e\gamma}^2 \times \Delta t_{e\gamma} \times T$

- Lower instantaneous muon beam rate (DC muon beam)
- Better detector resolutions

MEG experiment

- Paul Scherrer Institute in Switzerland
- World most intense 590MeV proton accelerator (2.4mA)

MEG results

 θ_{e^*y} (mrad)

- $N_{ACC} = 7684 \pm 103$
- $N_{RMD} = 663 \pm 59$
 - Signal PDF enhanced

- Full dataset : $7.5x10^{14} \mu^+$ stopped on the target
- Blind analysis in $(E_{\gamma}, t_{e\gamma})$ plane
- Five observables $E_{\gamma}, E_{e}, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$
- Maximum likelihood analysis
- All PDFs well consistent with data
- The fit result was consistent with no signal

· Br(μ +→e+ γ) < 4.2×10⁻¹³ @ 90% C.L.

MEG II Experiment

Liquid Xenon y Detector

Better uniformity w/ VUV-sensitive 12x12mm² SiPM

Downstream

Radiative Decay Counter

Further reduction of radiative BG

Positron

(e⁺)

×2 resolution everywhere

Muon (µ†)

PSI

Pixelated Positron Timing Counter 30ps resolution w/ multiple hits

(x2.3 higher rate)

Single volume small stereo cells more hits

Cylindrical Drift Chamber

MEG II positron spectrometer

Cylindrical Drift Chamber

- Tracking 52.8MeV e+ to reconstruct vertex, angle, and momentum
- Single volume wire drift chamber with 1280 anode wires with less material
- Higher granularity, increased number of hits per track → better angle/momentum resolution
- High transparency towards TC
 → Higher positron detection efficiency

Pixelated Timing Counter

- Time measurement of 52.8MeV e+
- 15 scintillator bars → 256 scintillator plates
 - multi-counter hits → better timing resolution down to ~30ps

MEG II liquid xenon γ detector

- Energy, position, time measurement of 52.8MeV γ from μ→eγ decay
- Inner 216 PMTs → 4092 MPPCs (VUV-sensitive large area MPPCs)
- Better granularity, better uniformity→Better energy, position resolution

Radiative Decay Counter

- New device for MEG II
 - To tag high energy γ background from radiative muon decay by detecting low momentum e⁺
- Downstream detector ready, upstream detector under development
 - μ+ beam goes through US RDC

LYSO 2×2×2 cm³+SiPM for e+ energy

Plastic Scinti.+SiPM for e+ timing

Readout Electronics

- Waveform data crucial for high rate environment
- Number of channels increased
 - For finer granularity
 - More compact boards necessary
- WaveDREAM developed by PSI
 - Waveform digitizer(DRS4), simple trigger, amplifier and bias voltage supply (~200V) are integrated in a board, suitable for SiPM
- Online trigger important to manage high event rate and background suppression.
 - FPGA based trigger system prepared

Sensitivity

Resolution	MEG	MEG II
E _{e+} (keV)	380	130
θ_{e+} (mrad)	9.4	5.3
фе+ (mrad)	8.7	3.7
z _{e+} /y _{e+} (mm) core	2.4/1.2	1.6/0.7
E _Y (%) (w>2cm/<2cm)	1.7/2.4	1.0/1.1
$u_{\gamma}, v_{\gamma}, w_{\gamma} (mm)$	5/5/6	2.6/2.2/5
t _{ey} (ps)	122	84
Efficiency (%)		
Trigger	99	99
Υ	63	69
e+ (tracking × matching)	30	70

 Data for a few months exceed the current limit, and reach 6x10-14 in three years

Current status

Construction finished in 2018. Detector commissioning after small modification will be restarted this fall.

Construction finished in 2017. Performance check ongoing.

Tests of Prototype WaveDREAM with 6 crates (~1500ch.) and final version with 2 crates will be carried out this fall

Mass production next year

Prospects & Summary

- MEG II Detector integration in August 2019, and muon beam time from September to December with limited no. of electronics
- Mass production of the readout electronics happens next year.
- Engineering run and physics run will follow.
- The sensitivity of the MEG II experiment will exceed the current limit with a few month data statistics, and will be improved by one order of magnitude with three years data.

HIPA operation in 2018-2020

HIPA operation

Betrieb Protonen-Anlagen 2018-2020

Klaus Kirch, PSI

BVR Feb 13, 2018 – page 13

Final MEG dataset / Analysis

 Accumulated number of muons stopped on the target as a function of time

 Full dataset : 7.5x10¹⁴ μ⁺ stopped on the target

- Blind analysis in (E_Y, t_{eY}) plane
- Five observables $E_{\gamma}, E_{e}, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$
- Maximum likelihood analysis

Event distribution

2009-2013 data

Signal PDF contour $(1\sigma, 1.64\sigma, 2\sigma)$

Cylindrical Drift Chamber

- Tracking 52.8MeV e+ to reconstruct vertex, angle, and momentum
- Single volume wire drift chamber with 1280 anode wires
- Higher granularity, increased number of hits per track

MEG DCH	MEG II CDCH
16 modules	single volume
288 drift cells	1280 drift cells
40-80cm	2m long, stereo angle
He:C ₂ H ₆ =50:50	He:iC ₄ H ₁₀ =85:15

MEG II timing counter

Time measurement of 52.8MeV e+

MEG TC	MEG II TC
15 scintillating bars x 2	256 scintillator plates x 2
4x4x80 cm ³	12x(4or5)x0.5 cm ³
Readout by PMTs	Readout by SiPM
Single bar hit	Multiple counter hits

MEG II liquid xenon y detector

of photons collected by PMTs as a function of depth

 Energy, position, time measurement of 52.8MeV γ from μ→eγ decay

MEG LXe	MEG II LXe
900L LXe	900L LXe

216 2"PMTs (γ entrance) 4092 12x12mm² MPPCs

630 PMTs (other faces) 668 PMTs

- Non uniform response for shallow events
- Replace inner PMTs with MPPCs
- Better granularity, better uniformity
 →Better energy, position resolution