Searches for charged lepton flavor violating muon decay, MEG/MEG II experiment

Toshiyuki Iwamoto on behalf of the MEG II Collaboration
ICEPP, the University of Tokyo
8 August 2019
Introduction

• Charged Lepton Flavor Violation
 • FV happens in quarks, neutral lepton (neutrinos)
 • Why has charged lepton flavor violation never been observed yet?
• $\mu \rightarrow e\gamma$
 • Long search history since the muon has been discovered.
 • In SM + neutrino oscillation, $\text{Br}(\mu \rightarrow e\gamma) \sim 10^{-50}$
 • Many new physics scenarios (SUSY-GUT, SUSY-seesaw etc.) predict large $\text{Br}(\mu \rightarrow e\gamma)$ through new particles in a loop diagram
MEG/MEG II Experiment

- MEG experiment
 - MEG was designed to search for such regions where new physics like SUSY-GUT, SUSY-seesaw predict
 - Real chance to discover new physics
 - Data taking during 2009-2013
 - MEG final results: \(\text{Br}(\mu \rightarrow e\gamma) \) upper limit \(4.2 \times 10^{-13} \) @90%CL (sensitivity \(5.3 \times 10^{-13} \)) (Eur. Phys. J. C 76(8), 434(2016))

- MEG II experiment
 - An order of magnitude better sensitivity with three years data taking than MEG
 - Target sensitivity: \(6 \times 10^{-14} \)

- CLFV experiments
 - \(\mu \)-e conversion (DeeMe, COMET, Mu2e), \(\mu \rightarrow 3e \) (Mu3e) experiments etc. will also come soon

\[\mu \rightarrow e\gamma \text{ signal and background} \]

Signal

\[E_{\gamma}, E_e \approx 52.8 \text{MeV} \]
\[\Theta_{e\gamma}=180^\circ, \; T_{\gamma}=T_e \]

Accidental Background

- Dominant BG
- Michel e^+ + random γ from RMD/Annihilation in flight (AIF)

Radiative Muon Decay (RMD) Background

- $e^+ - \gamma$ timing coincident
- Good for timing calib.

\[N_{\text{acc}} \propto R_{\mu}^2 \times \Delta E_{\gamma}^2 \times \Delta E_e \times \Delta \Theta_{e\gamma}^2 \times \Delta t_{e\gamma} \times T \]

- Lower instantaneous muon beam rate (DC muon beam)
- Better detector resolutions
MEG experiment

- Paul Scherrer Institute in Switzerland
- World most intense 590MeV proton accelerator (2.4mA)
MEG results

- Full dataset: $7.5 \times 10^{14} \mu^+$ stopped on the target
- Blind analysis in $(E_\gamma, t_{e\gamma})$ plane
- Five observables $E_\gamma, E_e, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$
- Maximum likelihood analysis
 - All PDFs well consistent with data
 - The fit result was consistent with no signal

- $\text{Br}(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times 10^{-13} @ 90\% \text{ C.L.}$
MEG II Experiment

Liquid Xenon γ Detector
- Better uniformity w/ VUV-sensitive 12x12mm² SiPM

Radiative Decay Counter
- Further reduction of radiative BG

Positron (e⁺)
- ×2 resolution everywhere

Gamma-ray (γ)
- Cylindrical Drift Chamber

Muon (µ⁺)
- COBRA SC Magnet
- Pixelated Positron Timing Counter
 - 7x10⁷/s (×2.3 higher rate)
 - 30ps resolution w/ multiple hits
 - Single volume small stereo cells more hits

×2 resolution everywhere
MEG II positron spectrometer

- Cylindrical Drift Chamber
 - Tracking 52.8MeV e\(^+\) to reconstruct vertex, angle, and momentum
 - Single volume wire drift chamber with 1280 anode wires with less material
 - Higher granularity, increased number of hits per track → better angle/momentum resolution
 - High transparency towards TC → Higher positron detection efficiency

- Pixelated Timing Counter
 - Time measurement of 52.8MeV e\(^+\)
 - 15 scintillator bars → 256 scintillator plates
 - multi-counter hits → better timing resolution down to ~30ps
MEG II liquid xenon γ detector

- Energy, position, time measurement of 52.8MeV γ from μ → eγ decay
- Inner 216 PMTs → 4092 MPPCs (VUV-sensitive large area MPPCs)
- Better granularity, better uniformity → Better energy, position resolution
Radiative Decay Counter

- New device for MEG II
 - To tag high energy γ background from radiative muon decay by detecting low momentum e^+
- Downstream detector ready, upstream detector under development
 - μ^+ beam goes through US RDC

[Diagram of the detector system with labels for COBRA magnet, μ^+ beam, RDC, γ (RMD), e^+ (RMD), e^+ (Michel), e^+ spectrometer, Plastic Scinti.+SiPM for e^+ energy, LYSO 2x2x2 cm3+SiPM for e^+ energy]
Readout Electronics

- Waveform data crucial for high rate environment
- Number of channels increased
 - For finer granularity
 - More compact boards necessary
- WaveDREAM developed by PSI
 - Waveform digitizer (DRS4), simple trigger, amplifier and bias voltage supply (~200V) are integrated in a board, suitable for SiPM
- Online trigger important to manage high event rate and background suppression.
 - FPGA based trigger system prepared
Sensitivity

<table>
<thead>
<tr>
<th>Resolution</th>
<th>MEG</th>
<th>MEG II</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{e^+} (keV)</td>
<td>380</td>
<td>130</td>
</tr>
<tr>
<td>θ_{e^+} (mrad)</td>
<td>9.4</td>
<td>5.3</td>
</tr>
<tr>
<td>ϕ_{e^+} (mrad)</td>
<td>8.7</td>
<td>3.7</td>
</tr>
<tr>
<td>z_{e^+}/y_{e^+} (mm) core</td>
<td>2.4/1.2</td>
<td>1.6/0.7</td>
</tr>
<tr>
<td>E_{γ} (%) (w>2cm/<2cm)</td>
<td>1.7/2.4</td>
<td>1.0/1.1</td>
</tr>
<tr>
<td>u_{γ}, v_{γ}, w_{γ} (mm)</td>
<td>5/5/6</td>
<td>2.6/2.2/5</td>
</tr>
<tr>
<td>$t_{e\gamma}$ (ps)</td>
<td>122</td>
<td>84</td>
</tr>
</tbody>
</table>

Efficiency (%)

Trigger	99	99
γ	63	69
e^+ (tracking \times matching)	30	70

- Data for a few months exceed the current limit, and reach 6×10^{-14} in three years
Current status

CDCH
Construction finished in 2018. Detector commissioning after small modification will be restarted this fall.

TC

LXe

WaveDREAM
Tests of Prototype WaveDREAM with 6 crates (~1500ch.) and final version with 2 crates will be carried out this fall.
Mass production next year.

RDC
Downstream detector constructed in 2017, and performance test with muon beam finished.
Prospects & Summary

- MEG II Detector integration in August 2019, and muon beam time from September to December with limited no. of electronics

- Mass production of the readout electronics happens next year.
- Engineering run and physics run will follow.
- The sensitivity of the MEG II experiment will exceed the current limit with a few month data statistics, and will be improved by one order of magnitude with three years data.
HIPA operation in 2018-2020

Betrieb Protonen-Anlagen 2018-2020

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mrz</td>
</tr>
<tr>
<td>Beschleuniger</td>
<td>Resonator 2</td>
<td>Betrieb</td>
<td>Resonator 4</td>
</tr>
<tr>
<td>max. Strahlstrom</td>
<td>2.0 mA</td>
<td>2.0 mA</td>
<td>2.4 mA</td>
</tr>
<tr>
<td>Beamdump</td>
<td>neuem BV1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target E</td>
<td>4 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINQ Betrieb</td>
<td>Shtdown</td>
<td></td>
<td>Betrieb</td>
</tr>
<tr>
<td>Target Nr.</td>
<td>Target 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCN Betrieb</td>
<td>Testexperimente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myone (LMU&LTP)</td>
<td>Betrieb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

</table>

: Umbau
: Betrieb

Klaus Kirch, PSI
BVR Feb 13, 2018 – page 13
Final MEG dataset / Analysis

- Accumulated number of muons stopped on the target as a function of time

- Full dataset: 7.5×10^{14} μ^+ stopped on the target

- Blind analysis in $(E_\gamma, t_{e\gamma})$ plane

- Five observables $E_\gamma, E_e, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$

- Maximum likelihood analysis
Event distribution

\[
\cos \Theta < -0.99963 \ (90\% \ \varepsilon_{\text{signal}}) \\
|t_{\gamma\gamma}| < 0.2443\text{ns} \ (90\% \ \varepsilon_{\text{signal}}) \\
51 < E_{\gamma} < 55.5\text{MeV} \ (74\% \ \varepsilon_{\text{signal}}) \\
52.385 < E_e < 55\text{MeV} \ (90\% \ \varepsilon_{\text{signal}})
\]

2009-2013 data

Signal PDF contour (1\(\sigma\), 1.64\(\sigma\), 2\(\sigma\))
Cylindrical Drift Chamber

- Tracking 52.8 MeV e^+ to reconstruct vertex, angle, and momentum
- Single volume wire drift chamber with 1280 anode wires
- Higher granularity, increased number of hits per track

<table>
<thead>
<tr>
<th>MEG DCH</th>
<th>MEG II CDCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 modules</td>
<td>single volume</td>
</tr>
<tr>
<td>288 drift cells</td>
<td>1280 drift cells</td>
</tr>
<tr>
<td>40-80cm</td>
<td>2m long, stereo angle</td>
</tr>
<tr>
<td>He:C$_2$H$_6$=50:50</td>
<td>He:iC4H${10}$=85:15</td>
</tr>
</tbody>
</table>
MEG II timing counter

- Time measurement of 52.8MeV e^+

<table>
<thead>
<tr>
<th>MEG TC</th>
<th>MEG II TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 scintillating bars x 2</td>
<td>256 scintillator plates x 2</td>
</tr>
<tr>
<td>4x4x80 cm3</td>
<td>12x(4or5)x0.5 cm3</td>
</tr>
<tr>
<td>Readout by PMTs</td>
<td>Readout by SiPM</td>
</tr>
<tr>
<td>Single bar hit</td>
<td>Multiple counter hits</td>
</tr>
</tbody>
</table>

Single counter

6 SiPMs array

Resolution (ps)

$\sigma < 30\text{ ps}$
MEG II liquid xenon γ detector

- Energy, position, time measurement of 52.8 MeV γ from μ → eγ decay
- Non uniform response for shallow events
- Replace inner PMTs with MPPCs
- Better granularity, better uniformity → Better energy, position resolution

<table>
<thead>
<tr>
<th>MEG LXe</th>
<th>MEG II LXe</th>
</tr>
</thead>
<tbody>
<tr>
<td>900L LXe</td>
<td>900L LXe</td>
</tr>
<tr>
<td>216 2” PMTs (γ entrance)</td>
<td>4092 12x12mm² MPPCs</td>
</tr>
<tr>
<td>630 PMTs (other faces)</td>
<td>668 PMTs</td>
</tr>
</tbody>
</table>