DUNE Precision Neutrino Physics of the Future

Alfons Weber

for the DUNE Collaboration

General Setup

- LBNF/DUNE will consist of
 - An **intense** ν**-beam** fired from Fermilab
 - A Near Detector at Fermilab
 - A massive 40kt deep underground LAr detector in South Dakota

Physics Program

Neutrino Oscillations

- Search for leptonic CP violation
- Determine neutrino mass ordering
- Precision PMNS measurements

Supernova Physics

- Observation of time and flavour profile provides insight into collapse and evolution of supernova
- Unique sensitivity to electron neutrinos

Baryon number violation

- Predicted by many BSM theories
- LAr TPC technology well-suited to certain proton decay channels (e.g., ¬p→K+ν)
- Δ (B-L) ≠ 0 channels accessible (*e.g.*, n \rightarrow \bar{n})

An international science collaboration

1106 collaborators from 184 institutions in 31 countries

Beam

- Proton beam energy 60-120 GeV
- Power
 1.2 MW → 2.4 MW
- Neutrinos and anti-neutrinos

Near Detector Complex

Capabilities of the DUNE
Near Detector Complex
K. McFarland (6-Aug, 16:45)

- Four main components, working together:
 - Liquid argon detector (ArgonCube)
 - Downstream tracker with gaseous argon target (MPD)
 - LAr and GAr systems can move to off-axis fluxes (DUNE PRISM)
 - 4. On-axis flux monitor with neutron detection capability (3DST-S)
- High statistics constrains
 - Cross section & Flux

8-Aug-2019

Underground Laboratory SURF

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

DUNE Far Detector

Far detectors: 1st module

Single-Phase

E-field = 500 V/cm

ProtoDUNE

Performance of the ProtoDUNE-SP LAr detector L. Whitehead (6-Aug, 17:00)

ProtoDUNE Performance

dE/dx

Calibrated with muons

Applied to other particles

Very good agreement between data and simulation!

Additional calibration work and

particle-Ar cross section measurements are underway

Far detectors: 2nd module

Charge Readout Plane (Anode)

Dual-Phase

signal amplification in the gas phase

Photon detectors below cathode

Experimental Technique

- Produce wide-band pure v_u beam
 - Cover 1st and 2nd oscillation maximum
- Constrain models and systematics with near detector
- Measure spectrum of v_{μ} and v_{e} at a far detector
 - Combined analysis

Measurement Strategy

CP Violation and Mass Ordering

Mass ordering sensitivity

- Updated Sensitivity with realistic systematics and reconstruction
 - Move quickly to potential *CP* violation discovery
 - Rapid, definitive mass ordering determination ($>5\sigma$)

Other Physics

supernova

sterile neutrinos

atmospheric neutrinos

- Dark matter
- Large extra dimensions
- Dark photons
- NS interactions

Summary and Conclusion

- DUNE has an ambitious physics program
 - Precision oscillation parameter measurements
 - CPV, mass ordering
 - Nucleon decay, SN
- Truly international project with strong support
 - US & internationally
- Technology is well understood
 - Prototyping and verifications are well underway
- DUNE is the neutrino physics of the future

Backup

Why Liquid Argon?

- **Dense**: 40% denser than water
- Cheap: abundant (1% of atmos.)
- lonizes easily: 55,000 electrons/cm
- Excellent scintillation:
 20,000 photons/MeV
 (@ 500 V/cm)

DUNE-PRISM

- Vary the incident neutrino spectrum by moving off-axis
- Break cross section model degeneracies
- Linearly combine off-axis samples to craft "arbitrary" neutrino spectra
 - narrow Gaussian spectra
 - FD-like oscillated spectra
- Unprecedented reduction in cross section modeling uncertainties

Filling ProtoDUNE (I)

Filling ProtoDUNE (II)

Two Technologies

Single-Phase

3.6 m horizontal drift

ProtoDUNE status

- ProtoDUNE-SP detector was completed at the end of June, filling of the cryostat completed on September 13th, TPC activated and on data taking since September 21st
- ProtoDUNE-SP took beam data until November 11th, followed by an endurance run with cosmics to assess the stability and performances of the detector
- ProtoDUNE-DP being filled now
- Once filled, *ProtoDUNE-DP* will go for an extended cosmic run to assess the stability and performances of the detector

ProtoDUNEs have submitted a proposal to the SPSC for taking data with beam after Long Shutdown 2

Liquid Argon Temperature

Temperature varies < 0.01 K across the cryostat

Liquid Argon Purity

The purity is measured as the electron lifetime

Electrons need 3 ms to cross the drift volume

APAs and Cold Electronics

Exceptionally low noise operation and scalable cryostat design

~ 15000 wires, only 4 channels dead (0.03%)

Electronics on top of APAs submerged in LAr at 87 K

ENC < $750 e^- \longrightarrow S/N \sim 20$

meets DUNE requirements (S/N>10)

The First Event

Real Events

Automatic Reconstruction

ProtoDUNE-DP

Sensitivity vs Time

Mass ordering sensitivity

Significant milestones throughout beam-physics program

Note: When a choice is called for, NuFit 4.0 (Nov 2018) best-fit parameters and/or uncertainties are assumed JHEP 01 (2019) 106, www.nu-fit.org

PMNS Precision

 δ_{CP} measured to ~7° – 17°

Single-experiment* precision oscillation measurement!

Octant determination at 10 years

$>5\sigma$ octant determination possible

*solar parameters θ_{12} and Δm_{21}^2 are still inputs

PMNS Precision

Ultimate $\sin^2 2\theta_{13}$ precision competitive with reactor measurements

 $\sin^2 2\theta_{13}$ resolution: 0.004 (4.5%)

Supernova Neutrinos

- **99% of energy** released in a core-collapse supernova is carried away by neutrinos (cf.: 0.01% carried away by light)
- **Rich information** embedded in neutrino signal:
 - **Supernova physics:** core-collapse mechanism, black hole formation, shock stall/revival, nucleosynthesis, cooling, ...
 - Particle physics: flavor transformations in core, collective effects, mass ordering, nuclear equation of state, exotica

Argon target:

Unique sensitivity to v_e flux

DUNE at 10 kpc:

 $\sim 3000 \nu_e$ events over 10 seconds

Directionality

- Prompt pointing to a supernova is highly valuable information to astronomers:
 - Catch early turn-on of EM signal
 - Support observation of optically dim SN
 - Era of multi-messenger astronomy

10.25 MeV electron, simulated and reconstructed

← Direction likelihood surface at DUNE for 10 kpc supernova

 ν_e CC and $\nu + e$ (elastic scatter) events

Channel tagging can improve this further.

Much better pointing with ES events!

But only ~7% of sample.

- Several other low-energy neutrino measurements under study
- Some discussion in Technical Design Report
 - diffuse supernova neutrino background
 - solar neutrinos
 - absolute neutrino mass from SNv
 - Lorentz/CPT violation

