

Towards Realistic Implementations of Large Imaging Calorimeters

The CALICE Program

Development of highly granular electromagnetic and hadronic calorimeters for particle flow reconstruction in future collider experiments. Key steps:

- Validation of the concept of high granularity with physics prototypes <
- **Technical realization** of detector systems satisfying collider constraints -Technological prototypes with fully embedded electronics tested in particle beams
- **Application** of CALICE expertise and technology in running experiments e.g. CMS HGCal

A key element: Use of *common technologies and infrastructure*, such as a common ASIC family (SKIROC, SPIROC, HARDROC) to facilitate combined running.

Particle Flow Calorimetry

- High sampling frequency and granularity in calorimeters to separate particle showers
- Avoid dead material between tracker and calorimeters
- Calorimeters have to be inside the magnet coil
- Requires the design of very compact service electronics and active layers sensitive to the MIP level
- Requires precise mechanical assembly of the calorimeter structure allowing only small tolerances over large areas

Silicon Readout

ECAL with tungsten absorber (SiW ECAL):

Silicon pixels as active material 9x9 cm² wafers with 5.5x5.5 mm² cell size

- Single base units (ASU's) validated at low energies 16 ASICs and 1024 channels per ASU
- Full QA and assembly chain Validation of up-scalability to long slabs of 8 chained modules (barrel ECAL)

-30 -20 -10 0 10 20 Hit time [ns] Successful single cell MIP calibration of the full AHCAL prototype: Good overall detector response Signal to Noise ratio = $MPV_{MIPS}/\sigma_{Noise} \sim 50$

Timing on a single cell level: ~3.3ns for the AHCAL in test beam mode, higher time resolution possible with faster clock setting

Testing of binary versus multi threshold mode of the GRPCs: Two bit multi threshold mode improves energy resolution in SDHCAL

CALICE SDHCAL

SiPM-on-Tile Analogue HCAL (AHCAL): Scintillator tiles with individual MPPC readout

Beam Tests of Technological Prototypes Assembly of ~1 m² prototypes with fully embedded electronics

3x3 cm² segmentation

QA assurance of all modules Sample testing of MPPC batches

Automated assembly of large layers by pick and place machines

Similar technology used for a scintillator strip ECAL: High effective granularity achieved by crossed strips in adjacent layers

60 GeV AHCAL Event AHCAL prototype

SiW ECAL prototype with 15 layers

with 39 layers

facilities at CERN/DESY

Rigorous testing of all

technologies at TB

SDHCAL prototype with 48 layers

Integration

Small scale detector interfaces (DIF) as link between ASICS and DAQ system

Gaseous Readout GRPC based hadronic calorimeter (SDHCAL):

Mylar layer (50µ)

Readout pads (1cm x 1cm) PCB interconnec

Precision mechanics to assemble structural components, e.g. Electron beam welding of absorber structure for excellent surface

Compact SL-board and low profile connectors as interface for slow control and readout of up to 15 chained slabs

binary and two bit readout 1 cm² pad size

Key developments towards scalability to full size experiments

SiW ECAL

Development of flat interconnections between detector modules to facilitate compact layers

1 Ap. Ag≥±t

Lorenz Emberger (emberger@mpp.mpg.de) Author: Max-Planck-Institute for Physics Föhringer Ring 6 80805 Munich

Kiyotomo Kawagoe (kawagoe@phys.kyushu-u.ac.jp) Presenter: Department of Physics and RCAPP Kyushu University 744 Motooka Nishi-ku Fukuoka, 819-0395 Japan

for the CALICE Collaboration

