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Abstract
ATLAS electron and photon triggers covering fransverse energies from 5 GeV to several TeV are essential fo record signals for a wide variety of physics: from Standard Model
processes to searches for new phenomena in both proton-proton and heavy ion collisions. Main frl%gers used during Run 2 (2015-2018) for those physics studies were a single-
electron trigger with Er threshold around 25 GeV and a diphoton trigger with thresholds af 25 and 35 GeV. Relying on those simple, general-purpose triggers is seen as a more
robust frigger strategy, at a cost of sllth’rIg higher trigger output rates, than to use a large number of analysis-specific friggers. To cope with ever-increasing luminosity and more
challenging pile-up conditions at the LHC, the trigger selections needed to be optimized to control the rates and keep eftficiencies high. The ATLAS electron and photon
performance during Run-2 data-taking is presenfed as well as work ongoing to prepare to even higher luminosity of Run 3 (2021-2023
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