

The ATLAS Electron and Photon Trigger

<u>Lucas Flores</u>, On behalf of the ATLAS Collaboration
The University of Pennsylvania

Abstract

ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton-proton and heavy ion collisions. Main triggers used during Run 2 (2015-2018) for those physics studies were a single-electron trigger with E_T threshold around 25 GeV and a diphoton trigger with thresholds at 25 and 35 GeV. Relying on those simple, general-purpose triggers is seen as a more robust trigger strategy, at a cost of slightly higher trigger output rates, than to use a large number of analysis-specific triggers. To cope with ever-increasing luminosity and more challenging pile-up conditions at the LHC, the trigger selections needed to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon performance during Run-2 data-taking is presented as well as work ongoing to prepare to even higher luminosity of Run 3 (2021-2023)

The ATLAS Trigger System

The ATLAS detector has a two-level Trigger system

- The Level 1 (L1) hardware trigger
 - Uses low granularity data from calorimeters (trigger towers) and the muon system to identify Regions of Interest(Rols)
 - Reduces the bunch crossing rate of 40 MHz to below 100 kHz
- The High Level Trigger (HLT) is software based
 - Seeded by Rols from L1
 - Performs reconstruction and Identification similar to offline
 - Reduces L1 output rate to an average of 1kHz

20% of the bandwidth is allocated to electron (e) and photon (γ) triggers

Triggering on e/γ

- L1 creates Rol as a 4x4 trigger tower cluster (0.1 x 0.1 granularity in η and φ) in the central (|η| < 2.5) region of EM calorimeter
- Sum of the transverse energy (E_T) from at least one of the four possible pairs of nearest neighbor towers required to exceed a predefined threshold.

The following selection is performed at the HLT:

Fast Step

~ 1.5 GB/s

- Cut based selection using calorimeter variables for all γ and electron triggers with thresholds of E_T below 15 GeV
- Neural network based selection (Ringer) for electron triggers with thresholds E_T>15GeV
- ullet Loose association of tracks to clusters for $oldsymbol{e}$'s

Fast Calorimeter Reconstruction (Shower Shape Quantities) Fast Calorimeter Reconstruction (Shower Shape Quantities) Fast Calorimeter Reconstruction Fast Electron Reconstruction Fast

Level 1 Calo

Level 1 Calo

- Cut based ID of photons similar to the offline algorithms
- Likelihood (LH) based identification (ID) of electrons similar to offline algorithms
- Isolation requirement is applied in some cases to further suppress backgrounds

Sources of Inefficiency for Electron Triggers

- Efficiency losses caused by differences in online and offline reconstruction and selection
- These differences need to be minimized within HLT CPU and timing constraints
- For 26 GeV electrons most of the inefficiency is due to electron identification
- for 60 GeV electrons sources are more diverse
- In both cases, inefficiency is with respect to offline electrons with a tight ID, nonisolated offline electrons as well as corresponding L1 requirements

e/γ Trigger Performance in 2018

- Electron efficiency is measured using a tagand- probe method with Z→ee events
 - Good agreement seen with 2017 data
- Photon efficiency measured based on datadriven bootstrap method with L1 trigger
 - Close to 100% efficiency at a few GeV above trigger threshold
 - Good agreement seen with 2017 data.

Δ γs 13 TeV, Data 2017, 688 pb

Offline electron E_x>29 GeV

ATLAS Preliminary

ATLAS Preliminary

Changes and Improvements in Run 2

Photon Chains

Electron Chains

rrigger type	2015	2010	2017-2018	1rigger type	2015			2016		2017-2018		
Single photon	g120_loose (EM22VHI)	g140_loose (EM22VHI)		Single electron	e24_lhmedium (EM20VH) e120_lhloose		e60_lhmedium_nod0					
Primary diphoton	g35_loose_g25_loose (2EM15VH)	g35_medium_g25_medium (2EM20VH)		Dielectron	2e12_lhloose (2EM10VH)			e140_lhloose_nod0				
Tight diphoton	2g20_tight (2EM15VH)	2g22_tight (2EM15VH)	2g20_tight_icalovloose (2EM15VHI)	Step	(ZEIV	2015	2	016	20		201	
				Fact calorimator	Cut bosed			Dinger for E- > 15 GeV				

- 20: photon ET > 20 GeV.
- loose, medium, tight: identification.
- icalovloose: calorimeter-only loose isolation working point
- L1EM15VHI: an electromagnetic cluster with an η-dependent E_T cut (V) of 15 GeV and hadronic energy veto (H) and electromagnetic isolation (I) which seeds the HLT trigger chain
- online 'tight' photon selection reoptimized in 2018 to be in sync with the new offline 'tight' selection
- The calorimeter only isolation was introduced at the HLT in tight diphoton triggers for the first time in 2017

- e26: electron ET > 26 GeV
- Ihvloose, Ihloose, Ihmedium, Ihtight: likelihood identification working point
- ivarloose: HLT track-based isolation
- EM22VHI: an electromagnetic cluster with an η-dependent E_T cut (V) of 22 GeV and hadronic energy veto (H) and electromagnetic isolation (I) which seeds the HLT trigger chain
- Yearly updates to the electron thresholds and trigger configuration to optimize trigger performance

Ringer Algorithm

- The algorithm is a neural-network based fast-calorimeter reconstruction algorithm
- Uses all calorimeter layers, centered in a window around the cluster barycenter
- \bullet Each ring is the collection of cells around the previous one. Ring value is the sum E_T of all cells of that ring
- Achieves same signal efficiency as cut-based method but with a 50% reduction in CPU demand for the lowest unprescaled single electron trigger

Run 3: New Hardware and Multi-Threading

- L1 Calorimeter trigger upgrade will increase granularity ten-fold and will improve background rejection
- Trigger algorithms will run in the multithreaded environment of the athena framework(AthenaMT) and will have offline-like access to data
- The figure shows Run 3 trigger e/γ sequence under development
- ID will also need to be re-optimized

