Latest Neutrino Oscillation Results from the Daya Bay Experiment Zhe Wang, Tsingua University (for the Daya Bay Collaboration) Aug. 5, 2019 at Lepton Photon 2019, Toronto, Canada

Principle of Antineutrino Detection & Oscillation Measurement $\overline{v}_e + p \rightarrow e^+ + n$ $|+H \rightarrow D + \gamma \qquad 2.2 \text{ MeV } 200 \ \mu s$ $+Gd \rightarrow Gd^* \rightarrow Gd + \gamma 's \qquad 8\text{MeV} \qquad 30 \ \mu s$ Prompt: e⁺. IBD Delayed: n capture on H or Gd. 5 sample

Summary of the Latest IBD Dataset - 1958 Days

Summary of signal and backgrounds. Rates are corrected for the muon veto and multiplicity selection efficiencies $\varepsilon_{\mu} \cdot \varepsilon_{m}$.

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\bar{\nu}_e$ candidates	830 036	964 381	889 171	784 736	127 107	127 726	126 666	113 922
DAQ live time (days)	1536.621	1737.616	1741.235	1554.044	1739.611	1739.611	1739.611	1551.945
$\varepsilon_{\mu} \times \varepsilon_{m}$	0.8050	0.8013	0.8369	0.8360	0.9596	0.9595	0.9592	0.9595
Accidentals (day^{-1})	$8.27 {\pm} 0.08$	$8.12 {\pm} 0.08$	$6.00 {\pm} 0.06$	$5.86 {\pm} 0.06$	$1.06 {\pm} 0.01$	$1.00{\pm}0.01$	$1.03 {\pm} 0.01$	$0.86{\pm}0.01$
Fast neutron $(AD^{-1} day^{-1})$	0.79 ± 0.10		0.57 ± 0.07		0.05 ± 0.01			
$^{9}\text{Li}/^{8}\text{He} (\text{AD}^{-1} \text{ day}^{-1})$	2.38 ± 0.66		1.59 ± 0.49		0.19 ± 0.08			
Am-C correlated (day^{-1})	$0.17 {\pm} 0.07$	$0.15 {\pm} 0.07$	$0.14 {\pm} 0.06$	$0.13 {\pm} 0.06$	$0.06{\pm}0.03$	$0.05 {\pm} 0.02$	$0.05 {\pm} 0.02$	$0.04 {\pm} 0.02$
¹³ C (α , n) ¹⁶ O (day ⁻¹)	$0.08 {\pm} 0.04$	$0.06 {\pm} 0.03$	$0.04 {\pm} 0.02$	$0.06{\pm}0.03$	$0.04 {\pm} 0.02$	$0.04 {\pm} 0.02$	$0.04 {\pm} 0.02$	$0.04 {\pm} 0.02$
$\bar{\nu}_e$ rate (day ⁻¹)	659.36 ± 1.00	681.09 ± 0.98	601.83±0.82	$595.82 {\pm} 0.85$	$74.75 {\pm} 0.23$	75.19±0.23	$74.56 {\pm} 0.23$	75.33±0.24
⊻10 ³								

Improvement in Detector Energy Response Modeling

The absolute energy calibration uncertainty was reduced to less than 0.5% for visible energies

1. Installation of a flash analog-todigital converter readout system

– – - Daya Bay 95% C.L. – – Daya Bay 95% CL_s

— Daya Bay 95% expected (±[.]

2. Special calibration campaign using different source

Improved Li9/He8 Background Measurement

Results on Oscillation Measurement

Other Oscillation-related Results Improved search for a sterile neutrino (with Bugey-3 + MINOS)

Phys. Rev. Lett. 117, 151802 (2016) Phys. Rev. Lett. 117, 151801 (2016)

Search for neutrino decoherence

Study of the wave packet treatment of neutrino oscillation at Daya Bay Eur. Phys. J. C77, 606 (2017)

Search for a time-varying electron antineutrino signal at Daya Bay

Search for CPT or Lorentz violation and other new physics Phys. Rev. D98, 092013 (2018)

Independent result based on a rate-only analysis using 621 days' H-Capture data

 $\sin^2 2\theta_{13} = 0.071 \pm 0.011$

PRL 121, 241805 (2018) PRD 93, 072011 (2016)

Experiment Daya Bay D-CHOOZ RENO

allowed regions in the Δm^2_{ee} $sin^2 2\theta_{13}$ plane. Value Daya Bay nGd 0.0856 ± 0.0029 0.0896 ± 0.0068 0.071 ± 0.011 0.105 ± 0.014 $0.094^{+0.015}_{-0.013}$ $0.099^{+0.037}_{-0.017}$ $0.105^{+0.027}_{-0.024}$ T2KGlobal θ_{13} comparison \longrightarrow $0.116^{+0.031}_{-0.025}$ $0.06 \quad 0.08 \quad 0.1 \quad 0.12 \quad 0.14$ $\sin^2 2\theta_{13}$

8

Results Related Cosmic-ray

Seasonal Variation of the Underground Cosmic Muon Flux JCAP01 (2018) 001

Cosmogenic neutron production at Daya Bay Phys. Rev. D97, 052009 (2018)

* Please also see the "Reactor Antineutrino Flux and Spectrum" Measurement at Daya Bay" talk on 6 Aug 2019. A full list at http://dayabay.ihep.ac.cn/twiki/bin/view/Public/DybPublications

The uncertainty in the cosmogenic ⁹Li and ⁸He background is reduced from 45% to 30% in the near detectors