Search for dark sector via charmonia decay at BESIII

Xiaodong Shi(on behalf of BESIII Collaboration)

xiaodong.shi@mail.ustc.edu.cn

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

International Symposium on Lepton Photon Interactions at High Energies Toronto, Canada, 5-10 August 2019

Motivation

- Numerous indirect astrophysical observations provide the existence of dark matter. However, the property of dark matter is still unclear.
- No observed result from collider experiment.
- Quarkonium decay is one way to search dark matter in collider experiments.
- BESIII has accumulated 10 Billion J/ ψ and 0.5 Billion ψ (3686). (World largest data sample.) (1.3 Billion J/ ψ are accumulated in 2009&2012 year.)

Search for dark photon via $J/\psi \rightarrow \gamma' \eta^{(\prime)}$, $\gamma' \rightarrow e^+e^-$

- Models with an extra U(1) gauge group predicts a massive vector boson force carrier, called a dark photon(γ'). [Phys.Lett. 166B(1986) 196-198]
- The dark photon can couple to the SM photon and decay into SM particles.
- Mixing strength could be extracted in: [JHEP 0907 (2009) 051] Ength could be extracted in: $\frac{\mathcal{B}(J/\psi \to \gamma' \eta^{(\prime)})}{\mathcal{B}(J/\psi \to \gamma \eta^{(\prime)})} = \varepsilon^2 |F_{J/\psi}| \frac{\Lambda^{3/2}(m_{J/\psi}^2, m_{\eta^{(\prime)}}^2, m_{\gamma'}^2)}{\Lambda^{3/2}(m_{J/\psi}^2, m_{\eta^{(\prime)}}^2, m_{\gamma'}^2)}$ $|F_{J/\psi}| = \frac{\Lambda^2}{\Lambda^2 - m_{\gamma'}^2}$, $\Lambda = m_{\psi(2S)}$ $\Lambda^{3/2}(m_1^2, m_2^2, m_3^2) = (1 + \frac{m_3^2}{m_1^2 - m_2^2})^2 - \frac{4m_1^2m_3^2}{(m_1^2 - m_2^2)^2}$
- \bigcirc Reconstruct η with $\gamma \gamma / \pi^+ \pi^- \pi^0$, η' with $\gamma \pi^+ \pi^- / \eta \pi^+ \pi^-$.
- \bigcirc Veto γ conversion background by electron-positron pair vertex.
- \bigcirc Searching signal on $M(e^+e^-)$.
- No significant signal observed. Upper limits @ 90% C.L. are calculated.

OAlso these two works improved corresponding branching fraction precision. Based on Phys. Rev. D. 99, 012006 (2019) & Phys. Rev. D 99, 012013 (2019)

Search for $\omega/\phi \rightarrow invsible via J/\psi \rightarrow \eta\omega/\phi$

- © In SM, $\mathcal{B}(\omega/\phi \to \nu\bar{\nu})$ is really low(~ $10^{-13}/10^{-11}$).[Phys.Rev.D98,113006(2108)]
- \bigcirc Many beyond SM theories can enhance $\mathcal{B}(\omega/\phi \rightarrow \text{invsible})$, such as NMSSM, extra U(1) Model ... [Phys.Lett.110B(1982)250, Phys.Rev.D72,103508(2005)]
- © BESIII searched ω/ϕ \rightarrow invisible **first time** on 1.3B J/ ψ , by tagging $\eta(\pi^+\pi^-\pi^0)$.
- To minimize the systematic uncertainty, the result is measured with:

$$\overline{\mathcal{B}(V \to visible)} = \overline{N_{sig}^{visible} \cdot \epsilon^{invisible}}$$

$$\bigcirc \text{ Searching signals on } M_{recoil}^{V}.$$

$$\bigcirc \text{ No obvious signals found.}$$

$$\bigcirc \text{ By maximum likelihood fit, N(signal)}$$

$$\text{ is only } 1.4 \pm 3.6 \text{ for } \omega \to \text{invsible}$$

$$\text{ and } -0.6 \pm 4.5 \text{ for } \phi \to \text{invsible.}$$

- $N_{sig}^{invisible} \cdot \epsilon^{visible}$ $\mathcal{B}(V \to invisible)$ $\mathcal{B}(V \rightarrow visible)$
- No obvious signals found.
- By maximum likelihood fit, N(signal) is only 1.4 ± 3.6 for $\omega \rightarrow \text{invsible}$ and -0.6 \pm 4.5 for ϕ \rightarrow invsible.
 - M_{recoil}^{V} (GeV/c²)
- Using the Bayesian approach, the upper limits at the 90% C.L. are calculated:

$$\frac{\mathcal{B}(\boldsymbol{\omega} \to invisible)}{\mathcal{B}(\boldsymbol{\omega} \to \boldsymbol{\pi}^+\boldsymbol{\pi}^-\boldsymbol{\pi}^0)} < 8.1 \times 10^{-5} \qquad \frac{\mathcal{B}(\boldsymbol{\phi} \to invisible)}{\mathcal{B}(\boldsymbol{\phi} \to \boldsymbol{K}^+\boldsymbol{K}^-)} < 3.4 \times 10^{-4}$$
 with $\mathcal{B}(\boldsymbol{\omega} \to \boldsymbol{\pi}^+\boldsymbol{\pi}^-\boldsymbol{\pi}^0)$, $\mathcal{B}(\boldsymbol{\phi} \to \boldsymbol{K}^+\boldsymbol{K}^-)$ in PDG:
$$\mathcal{B}(\boldsymbol{\omega} \to invisible) < 7.3 \times 10^{-5} \qquad \mathcal{B}(\boldsymbol{\phi} \to invisible) < 1.7 \times 10^{-4}$$
 Based on Phys. Rev. D. 98, 032001 (2018)

Search for dark gauge boson via $J/\psi \rightarrow U'\eta', U' \rightarrow \gamma\pi^0$

- A new gauge boson could couple to quarks. [Phys.Lett.B221,80(1989)]
- \odot Belle reported a search for $\eta \to \gamma U'$, $U' \to \pi^+\pi^-$. [Phys.Rev.D94,092005(2016)]
- © BESIII searched J/ $\psi \rightarrow \eta' U'$, $U' \rightarrow \gamma \pi^0$

first time using 1.3B J/ ψ data sample.

of Branching fraction of $J/\psi \rightarrow \omega \eta'$

by a factor of 1.4.

Phys. Rev. D. 89, 114008 (2014)

0.01

Medium

High!

- \bigcirc Reconstruct η' by $\pi^+\pi^-\eta(\gamma\gamma)$.

 \bigcirc Search dark boson at M($\gamma\pi^0$).

No significant signal observed.

Summary and outlook

- Using 1.3 B J/ ψ sample, BESIII has searched for ω/ϕ \rightarrow invisible, dark photon via J/ ψ \rightarrow $\eta^{(\prime)}e^+e^-$ and dark boson via J/ ψ \rightarrow $\eta'U'$, U' \rightarrow $\gamma\pi^0$ for **first time**. No significant signal observed.
- Other processes looking for dark sector are ongoing, such as $J/\psi \to invisible$, $J/\psi \to \gamma$ invisible, $\chi_{cI} \to \gamma$ invisible, $\Lambda \to \gamma$ invisible...

 $M_{U'}$ (GeV/c²)

