# Measurements of the Higgs production cross section in the $H \rightarrow \tau \tau$ decay channel with the ATLAS experiment



Alessia Murrone on behalf of the ATLAS Collaboration Lepton Photon 2019, 5-10 August, Toronto (Canada)



QCD calc. of ggF,  $p_{_T}^H \ge 120 \,\text{GeV}$ 

Jet energy resolution, comp. 0

QCD calc. of ggF,  $p_{\tau}^{H} \ge 60 \text{ GeV}$ 



Impact =  $\Delta \sigma_{H \to \tau\tau} / \sigma_{H \to \tau\tau}$ 

#### 1. Introduction

- $H \rightarrow \tau \tau$  is a considerably important decay channel because it allows to directly measure Yukawa coupling
- B.R. 6.32 %
- Analysis performed with data collected by the ATLAS experiment during 2015 and 2016 for an integrated luminosity of 36.1 fb<sup>-1</sup> at  $\sqrt{s} = 13$  TeV (improvement of Run 1 result)

B.R. 12.4%

• 3 subchannels according to the  $\tau$  decay

- Had-Had  $\tau_{had} + \tau_{had}$  B.R. 42.0% Complicated signature:
- $\rightarrow \tau_{had}$  reconstruction and identification of hadronic taus, difficult due to significant backgrounds from QCD jets
- $\rightarrow m_{mmc}$  Higgs invariant mass reconstruction done with the Missing Mass Calculator (MMC), likelihood based algorithm which takes into account missing transverse momentum due to neutrinos

#### 2. Selections

• 2 kinds of signal regions (SRs) for each decay channel exploiting different Higgs production processes (they are further divided in subregions)

**VBF**: targeting Vector Boson Fusion events, characterized by two high  $|p_T|$  jets with  $|\Delta \eta(j,j)| > 3$ and  $m_{ii} > 400$  GeV



**Boosted**: targeting Gluon Fusion events, which fail the VBF selection and are characterized by a high  $p_T$ Higgs boson,  $p_T^H > 100 \text{ GeV}$ 



- Dedicated control regions (CRs) for constraining normalisation of simulated backgrounds:  $Z \rightarrow ll$ , Top
- A dedicated validation region (VR) for checking the  $Z \to \tau\tau$  modelling but not used in the fit

## 3. Background estimation

in a Boosted

signal region

misidentified jets

are in yellow [1]

(had-had),

- $Z \rightarrow \tau \tau$  main irreducible background (50-90%), estimating using Monte Carlo samples, Sherpa NLO
  - Normalisation from fit to data, correlated across the channels but two different parameters for VBF and Boosted
  - The  $Z \rightarrow \tau \tau$  VR construction is based on lep-lep SR selection using  $Z \rightarrow ll$  events and it is used to verify the  $Z \rightarrow \tau \tau$ modelling
- Control regions for  $Z \rightarrow ll$  (lep-lep) and Top (lep-lep and lep-had)
  - $Z \to ll: 80 < m_{ll} < 100 \text{ GeV}$
  - Top: requirement to have b-tagged jets
- Jets misidentified as  $\tau$  or  $e/\mu$  (QCD, W/Z + jets): data-driven techniques
  - Template built in a dedicated CR and normalisation retrieved from CR extrapolation (lep-lep)
  - Fake factors derived in a dedicated CR and applied to SR events, normalisation from CR extrapolation (lep-had)
  - Template built in a dedicated CR and normalisation retrieved from fit to data (had-had)



### 4. Statistical analysis

- Maximum likelihood fit to extract the parameter of interest  $\sigma_{H \to \tau\tau} \equiv \sigma_H x \, \mathcal{B}(H \to \tau\tau)$  where  $\sigma_H$  is the total cross section for all Higgs production processes (their relative contribution is assumed to be equal to the Standard Model prediction)
- Higgs invariant mass distribution  $m_{mmc}$  used in the signal regions as the fitting variable
- Control regions used to constrain the normalisation of backgrounds
- Systematic uncertainties taken into account in the fit model as nuisance parameters

Fractional impact of systematic uncertainties on  $\sigma_{H \to \tau \tau}$ :

- Signal theory uncertainties: QCD scale for ggF
- Jet energy resolution
- Background statistics

| Source of uncertainty                     | Impact $\Delta \sigma / \sigma_{H \to \tau \tau}$ [%] |              |  |
|-------------------------------------------|-------------------------------------------------------|--------------|--|
|                                           | Observed                                              | Expected     |  |
| Theoretical uncert. in signal             | +13.4 / -8.7                                          | +12.0 / -7.8 |  |
| Background statistics                     | +10.8 / -9.9                                          | +10.1 / -9.7 |  |
| Jets and $E_{\mathrm{T}}^{\mathrm{miss}}$ | +11.2 / -9.1                                          | +10.4 / -8.4 |  |
| Background normalization                  | +6.3/ -4.4                                            | +6.3/ -4.4   |  |
| Misidentified $	au$                       | +4.5/ -4.2                                            | +3.4/ -3.2   |  |
| Theoretical uncert. in background         | +4.6/ -3.6                                            | +5.0/-4.0    |  |
| Hadronic $	au$ decays                     | +4.4/ -2.9                                            | +5.5/ -4.0   |  |
| Flavor tagging                            | +3.4/ -3.4                                            | +3.0 / -2.3  |  |
| Luminosity                                | +3.3/ -2.4                                            | +3.1 / -2.2  |  |
| Electrons and muons                       | +1.2 / -0.9                                           | +1.1/ -0.8   |  |
| Total systematic uncert.                  | +23 / -20                                             | +22 $/-19$   |  |
| Data statistics                           | $\pm 16$                                              | $\pm 15$     |  |
| Total                                     | +28 / -25                                             | +27 / -24    |  |

 $Z \rightarrow \tau \tau$  norm. factor, boosted cat. QCD calc. of ggF,  $1\rightarrow 2$  jet mig. b-mistag rate, comp. 0 QCD calc. of ggF, top quark mass Jet energy scale, comp. 7 LumiUncCombined  $Z \rightarrow II$  norm. factor, boosted cat. ATLAS -1σ Impact  $\sqrt{s}$  = 13 TeV, 36.1 fb<sup>-1</sup>  $m_{H} = 125 \text{ GeV}$ -0.5 0 0.5  $Pull = ( \partial - \theta_0 ) / \Delta \theta$ Systematic uncertainties impact on  $\sigma_{H \to \tau\tau}$  [1]

Systematic uncertainties impact on  $\sigma_{H\to\tau\tau}$ , grouped in categories [1]

## 5. Results

Observed (expected) significance of signal excess with respect to the background-only hypothesis of 4.4 (4.1)  $\sigma$ 

$$\sigma_{H \to \tau \tau} = 3.77^{+0.60}_{-0.59} \text{ (stat)}^{+0.87}_{-0.74} \text{ (syst) pb}$$

$$\sigma_{H \to \tau\tau}^{SM} = 3.46 \pm 0.13 \text{ pb}$$



 $\sigma_{H \to \tau \tau}$  measurement in the various subchannels and for the combined result. The predicted value from the standard model with its uncertainty is shown in yellow [1]

• Fit to  $\sigma^{VBF}_{H o au au}$  and  $\sigma^{ggF}_{H o au au}$ , in order to separate VBF and ggF production, all the other production processes assumed to be as in the Standard Model

$$\sigma^{VBF}_{H o au au} = 0.28 \pm 0.09 ext{ (stat)}^{+0.11}_{-0.09} ext{ (syst) pb}$$
  $\sigma^{ggF}_{H o au au} = 3.1 \pm 1.0 ext{ (stat)}^{+1.6}_{-1.3} ext{ (syst) pb}$ 

 $\sigma_{H \to \tau \tau}^{SM,VBF} = 0.237 \pm 0.006 \text{ pb}$  $\sigma_{H \to \tau\tau}^{SM,ggF} = 3.05 \pm 0.13 \text{ pb}$ ★ Best fit 0.4

2D contour plot with the 95% and 68% C.L. contours in the plane  $\sigma^{VBF}_{H o au au}$ ,  $\sigma^{ggF}_{H o au au}$ . The value predicted by the standard model is indicated by the black point while the best-fit value is shown as a star [1]

Fit with three parameters of interest performing cross section measurements in three mutually exclusive phase space regions, the selections are based on the simplified template cross sections framework

|   | Process | Particle-level selection                                                      | $\sigma$ [pb]                              | $\sigma^{ m SM}$ [pb] |
|---|---------|-------------------------------------------------------------------------------|--------------------------------------------|-----------------------|
|   | ggF     | $N_{\text{jets}} \ge 1,60 < p_{\text{T}}^{H} < 120 \text{GeV},  y_{H}  < 2.5$ | $1.79 \pm 0.53$ (stat.) $\pm 0.74$ (syst.) | $0.40 \pm 0.05$       |
|   | ggF     | $N_{\text{jets}} \ge 1, p_{\text{T}}^H > 120 \text{GeV},  y_H  < 2.5$         | $0.12 \pm 0.05$ (stat.) $\pm 0.05$ (syst.) | $0.14 \pm 0.03$       |
|   | VBF     | $ y_H  < 2.5$                                                                 | $0.25 \pm 0.08$ (stat.) $\pm 0.08$ (syst.) | $0.22 \pm 0.01$       |
| ı | 5.5     |                                                                               |                                            | 70                    |

- Combined fit with Run 1 data collected at  $\sqrt{s} = 7$  and  $\sqrt{s} = 8$  TeV leads to an observed (expected) significance of 6.4 (5.4)  $\sigma$ 
  - $\rightarrow$  first  $H \rightarrow \tau \tau$  observation in ATLAS
- All the measurements are in agreement with the Standard Model predictions