Latest LHCb measurements of semileptonic b-hadron decays

Serena Maccolini @ LP2*I9

on behalf of the LHCb collaboration University of Bologna and INFN Bologna Toronto - August 5 and 6, 2019

Istituto Nazionale di Fisica Nucleare

Why semileptonic b-hadron decays?

Good probes for lots of studies:

Neutral meson mixing

- High branching fractions ℜ(B→X/v)~10%
- Theoretically clean: only b → c current, parametrized in terms of scalar functions
- Theoretical uncertainty under control: could be further reduced with improvements in lattice QCD calculations
- Fully reconstructed signal due to missing neutrinos

\bar{B}_s^0 , Λ_b^0 fragmentation fractions [2]

- Knowledge of the fragmentation fractions of \bar{B}_{s}^{o} (f_{s}) and Λ_{b}^{o} ($f_{\Lambda b0}$) hadrons is essential for determining absolute branching fractions of decays of these hadrons at the LHC \to measurement of $\mathfrak{B}(\bar{B}_{s}^{o} \to \mu^{-}\mu^{+})$ and evaluation of $|V_{cb}|$ from
- $\Lambda_b{}^0 \to \Lambda_c{}^+\mu^- \overline{\mathbf{V}}_\mu$ decays

 The measured fractions of $\bar{\boldsymbol{B}}_s{}^0$ and $\Lambda_b{}^0$ are normalized to the sum of \boldsymbol{B}^- and $\bar{\boldsymbol{B}}^0$ fractions:

$$\frac{f_s}{f_u + f_d} = 0.122 \pm 0.006 \qquad \frac{f_{A_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$

• The Λ_b^o ratio depends strongly on transverse momentum, while the \bar{B}_s^o ratio shows a mild dependence

The LHCb detector @ the LHC

LHCb is a forward spectrometer (2 < η < 5) designed for **B** physics with *proton-proton* collisions

~100 M semileptonic decays of b-hadrons (B, B_s , B_c , Λ_b , ...) collected

$\Lambda_c^+, \Xi_c^+, \Xi_c^0$ baryon lifetimes [1]

- In Heavy Quark Effective Theory (HQET), at lowest order (LO), all charm lifetimes are equal. Sizable corrections enter at $O(1/m_c^2, 1/m_c^3) \rightarrow$ charm hadron lifetimes provide a sensitive probe of these higher order (HO) corrections
- Results: $au_{A_c^+} = 203.5 \pm 1.0 \pm 1.3 \pm 1.4 ext{ fs}$ $au_{\Xi_c^+} = 456.8 \pm 3.5 \pm 2.9 \pm 3.1 ext{ fs}$ $au_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0 ext{ fs}$

syst.

due to the uncertainty in the D+ lifetime

stat.

• The measurements are 3-4 times more precise than the current world average. Λ_c^+ , Ξ_c^+ lifetimes consistent with the world averages whilst Ξ_c^0 one is ~3.3 σ higher

Search for $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu_\mu$ [3]

- Fully leptonic B+ decays are rare as their branching fraction is proportional to |V_{ub}|². B+→I+v_I decays have precise Standard Model predictions and are helicity suppressed
 - → highly sensitive to New Physics
- At LHCb, measuring $B^+ \to \mu^+ \nu_\mu$ decays is challenging. This problem is absent for the $B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu$ decay which receives contributions from $B^+ \to \mu^+ \nu_\mu \gamma^*$ and $B^+ \to \mu^+ \nu_\mu V$ (where V is a vector-meson such as ω and ρ)

- Data compared with recent theoretical prediction [4] (vector-meson dominance)
- An <u>upper limit</u> on **3** is set: 1.4 x 10⁻⁸ at 95% C.L.

References

- [1] = LHCb collaboration, *Precision measurement of the* Λ_c^+ , Ξ_c^+ , Ξ_c^0 baryon [Phys. Rev. D 100, 032001]
- [2] = LHCb collaboration, *Measurement of b-hadron fractions in 13 TeV pp*collisions
 [LHCb-PAPER-2018-050, arXiv:1902.06794]
- [3] = LHCb collaboration, Search for the rare decay $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu_\mu$ [LHCb-PAPER-2018-037, arXiv:1812.06004]
- [4] = A. V. Danilina and N. V. Nikitin, *Four-Leptonic Decays of Charged and Neutral B Mesons within the Standard Model* [Phys. Atom. Nucl. 81 (2018) 347]