

Carla Marin Benito Laboratoire de l'Accélérateur Linéaire, Orsay France on behalf of the LHCb Collaboration

Motivation

The LHCb Collaboration is planning an Upgrade II, a flavour physics experiment for the high luminosity era. It will be installed in LS4 (2030) and targets an instantaneous luminosity of 1 to 2x10³⁴ cm⁻² s⁻¹, with an integrated luminosity of at least 300fb⁻¹. Modest consolidation of the current experiment will also be introduced in LS3 (2025).

LHCb Upgrade II will allow for a broad spectrum of important flavour-physics measurements such as: • Semileptonic $b \rightarrow s I^+I^-$ and $b \rightarrow d I^+I^-$ transitions, of which many not accessible in the current experiment or Upgrade I; • CP-violating phases γ and φ_s with a precision of 0.4° and 3 µrad;

Tracking System

Two general design challenges:

- Track segment matching
- Occupancy

To meet this challenge it is foreseen to:

- Increase the granularity
- Reduce the amount of material
- Exploit the use of precision timing

• CP-violation studies in charm with 10⁻⁵ precision;

• B(B⁰ $\rightarrow \mu^+\mu^-$)/B(B⁰_s $\rightarrow \mu^+\mu^-$) with an uncertainty of 20%;

• Lepton-universality tests in $b \rightarrow c \Gamma v$ decays, exploiting the full range of b-hadrons.

Vertex Locator

- To achieve performant operation:
- In a high pile-up environment
- Under high-radiation conditions
- We should:
- Reduce the pixel pitch size, sensor thickness
- Use detector with the timing resolution (LGAD)
- Remove the RF foil
- Use "hot-swap" mechanics

Magnet Station

PARIS

universite

PARIS-SACLA

Instrument internal surfaces: Detector from scintillating fibres Readout by SiPMs

Mighty Tracker

The Outer region: Vertical scintillating fibres The Inner and Middle region: Silicon detectors (HVCMOS)

Muon system

Additional iron shielding instead of Hadron

 New chamber technology (µ-RWELL) with their own customised frontend electronics

• reconstruction of multi-body final states physics with baryons

spectroscopy studies

• SiPM-based technology photodetectors, pixel area of ~1mm² • Mirror with a thickness of around 1%X0

Calorimeters

New possible candidates for ECAL:

• Multi-doped GAGG:Ce crystal calorimeter with longitudinal segmentation (good radiation hardness,

More Information

excellent energy resolution, very fast response)

• Shashlik or SpaCal (tungsten-alloy converter 25 X₀ in depth, crystal component for providing a fast-timing signal)

The Hadron Calorimeter will be removed

The LHCb experiment: http://lhcb-public.web.cern.ch/lhcb-public

Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era: https://cds.cern.ch/record/2244311 Physics case for an LHCb Upgrade II: https://cds.cern.ch/record/2320509

This poster is based on Vadym Denysenko's design: https://cds.cern.ch/record/2663388