
ATLAS Releases: Build,
Packaging and Deployment

- short overview

1

Oana Boeriu
Emil Obreshkov

on behalf of the ATLAS SIT Group
with input from:

 Attila Krasznahorkay
Graeme Stewart

Introduction
• The ATLAS software is composed of multiple projects that are each built

up out of many packages.

• After using CMT for many years, at the beginning of 2016 the build of the
software releases has been switched over to CMake.

• Around 2200 packages provide:

• shared libraries to be used by other packages

• module libraries used by the framework to load software components

• executables performing specialized tasks

• scripts, config files - to be installed with the package build target

• A package declares what other packages it needs for its own build.

• A project - a collection of packages built according to the dependency
declaration.

2

ATLAS Project - Highest Complexity
Build Overview

• LCG - represents the externals provided
by the LCG release

• tdaq, tdaq-common, dqm-common -
online software built with their own
configuration

• GAUDI - built using its own CMake
configuration

• still building this type of release every
night providing fixes and patches for
some old releases

3

The Athena Project
• The Athena project structure was simplified.

• Dependencies: AthenaExternals and Gaudi
(tdaq, tdaq-common, dqm-common)

• Versioning - we build each night a particular
state of athena git repository together with
versions of LCG, AtlasExternals & Gaudi

• The version of LCG (and tdaq/dqm-common)
is hardcoded in AthenaExternals project
CMakeLists.txt:

• Specific version of AthenaExternals and Gaudi
needed - taken from the externals.txt file

4

• Steps of the build:

• master CMakeLists.txt file describing the project

• AtlasSetup tool sets up:

• the environment e.g. TDAQ_RELEASE_BASE

• the gcc compiler

• version of CMake to use

• Find the base project(s) that it depends on

• Relocatable RPMs - environment variables guide the build configuration for
CTest and CPack

• AthenaExternals - first project to build and install

• the setup.sh is sourced to set it up for the other projects

• GAUDI is built next and installed (“GAUDI_ATLAS mode”)

• GAUDI_ROOT points to the installed location of Gaudi

• Athena is built and installed last 5

Scripts

• General scripts, used for building Athena as well as other project flavors
(AnalysisBase, AthDerivation, AthAnalysis etc.) can be used from Build/
AtlasBuildScripts

• checkout scripts for AtlasExternals and Gaudi

• environment setup scripts

• Project specific scripts are put into the main directory of that project, e.g.
Projects/Athena

• build_externals.sh - a script building all externals

• build.sh - a script building the Athena project

• Private manual builds are possible and easy thanks to all that.

6

Standard Builds & Packaging

• The build is done basically using:

• Build done on local disk (~130GB OPT and ~180GB DBG)

• nightly RPMs are release candidates which can be used directly to
distribute a release on the grid

• CPack used, having the option of producing opt/dbg rpms

• Once the rpms are locally built, they are copied to EOS (distributed file
system) by additional script. The rpms are http accessible for installations.

7

Distribution
• Python scripts used for the cvmfs installation (some 2780 lines of code - of

which ca 900 lines belong to monitoring)

• Create date-time directories for every nightly release, e.g.:

• /cvmfs/atlas-nightlies.cern.ch/repo/sw/master/

• drwxr-xr-x. 5 cvmfs cvmfs 7 Nov 27 04:59 2017-11-26T2257

• /cvmfs/atlas-nightlies.cern.ch/repo/sw/21.0 / 21.1 / 21.2 / 21.3 / ...

• LCG, external sw, tdaq-/dqm-common used in common by several nightlies:

• Possible to install a nightly anywhere else (using a standalone script) as
user.

• Private builds can be installed as well on cvmfs to be used by all users.8

Plans for improvements which might help
HPC porting

• Having the option to save the binaries of AthenaExternals e.g. and not start
a build every time from scratch

• We’d like an easy way of building and reusing existing binaries

• Nexus - sw repository to store binary artifacts

• git LSF ?

• Breaking up the large rpm file into several smaller chunks

• Include the build of LCG/tdaq-/dqm-common into our own build
procedure

9

Monthly release build overview

10

