Influence of vertical orbit distortions on energy calibration accuracy

A. Bogomyagkov

Budker Institute of Nuclear Physics Novosibirsk

January 11th, 2018

- A.M. Kondratenko. Doctoral Thesis. Novosibirsk, 1982.
- R. Assmann, J.P. Koutchouk, CERN SL/94-13 (AP).
- A.V. Bogomyagkov, S.A. Nikitin, A.G. Shamov, MOAP02, RuPAC 2006, Novosibirsk, Russia, http://accelconf.web.cern.ch/AccelConf/r06/PAPERS/MOAP02.PDF
- https://arxiv.org/abs/1801.01227

For flat orbits only

$$E[MeV] = 440.64843(3) \times \nu$$
.

Approximation (R. Assmann, J.P. Koutchouk)

$$\Delta\nu = \frac{\nu^2\cot\pi\nu}{8\pi}\sum\alpha_i^2\,,$$

 α_i are the orbit rotation angles.

Using observed vertical orbit RMS $\langle z^2 \rangle$ (assuming that $\langle z \rangle = 0$), number of quadrupole lenses *N* with average focal length *F*

$$\Delta \nu = \frac{\nu^2 \cot(\pi \nu)}{8\pi} \frac{N \left\langle z^2 \right\rangle}{F^2}$$

Validity of approximation

Energy shift versus spin tune at 1 mm vertical orbit RMS for VEPP-4M. Triangles are calculations by approximate expression, circles with error bars are results of the simulation.

A. Bogomyagkov (BINP)

General approach

Spin tune shift (Kodratenko)

$$\Delta \nu = \frac{1}{2} \sum_{k} \frac{|\omega_k|^2}{\nu - k}$$

Spin harmonics

$$\omega_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} \nu z'' \exp\left[-i(\Phi(\theta) - \nu\theta) - ik\theta\right] d\theta$$
$$z'' = \frac{1}{R} \frac{d^{2}z}{d\theta^{2}},$$
$$\Phi(\theta) = \int_{0}^{\theta} \nu RK_{0}(\theta') d\theta'$$

Approximation of general approach

Assumptions and definitions

- No straight sections: $\Phi(\theta) = \nu \theta$
- Constant vertical beta function: $\beta_z = const = \langle \beta_z \rangle$
- Average over circumference (), average over orbits⁻

Results

$$\overline{\Delta\nu} = \frac{\nu^2}{2} \frac{\overline{\langle Z^2 \rangle}}{Q} \sum_{k=-\infty}^{\infty} \frac{k^4}{(\nu_z^2 - k^2)^2 (\nu - k)}$$
$$Q = \frac{\pi}{2\nu_z^3} \cot \pi\nu_z + \frac{\pi^2}{2\nu_z^2} \csc^2 \pi\nu_z$$
$$\sigma_{\overline{\Delta\nu}} = \frac{\nu^2 \sqrt{3}}{2} \frac{\overline{\langle Z^2 \rangle}}{Q} \sqrt{2\nu \sum_{k=-\infty}^{\infty} \frac{k^8}{(\nu_z^2 - k^2)^4 (\nu - k)^2 (\nu + k)}}$$

A. Bogomyagkov (BINP)

Validity of approximation of general approach

Energy shift versus spin tune at 1 mm vertical orbit RMS for VEPP-4M. Solid and dashed lines are the spin tune shift and its uncertainty, circles with error bars are results of the simulation.

A. Bogomyagkov (BINP)

vertical orbit distortions

Tables for Z and W

E, GeV	45.6	78.65	81.3
σ_z, mm	1		
ν_{z}	267.22		
ν	103.484	178.487	184.5
$\Delta \nu$	$-1.9 \cdot 10^{-4}$	$-1.5 \cdot 10^{-3}$	$-1.8 \cdot 10^{-3}$
$\sigma\Delta\nu$	$2.8 \cdot 10^{-4}$	$2.2 \cdot 10^{-3}$	2.6 · 10 ⁻³
$\Delta E, keV$	-84.65	-667.116	-779.992
$\sigma \Delta E, keV$	125.197	986.9	1153.9
$\frac{\Delta E}{E}$	$-1.9 \cdot 10^{-6}$	$-8.5 \cdot 10^{-6}$	$-9.6 \cdot 10^{-6}$
$\frac{\sigma \Delta E}{E}$	$2.7 \cdot 10^{-6}$	$1.3 \cdot 10^{-5}$	$1.4 \cdot 10^{-5}$

Beam energy shift needs to be added to the actual value of the beam energy, uncertainty is unavoidable and sets the minimum error.

Choice of ν_z

$$\overline{\Delta\nu} = \frac{\nu^2}{2} \frac{\overline{\langle Z^2 \rangle}}{Q} \sum_{k=-\infty}^{\infty} \frac{k^4}{(\nu_z^2 - k^2)^2 (\nu - k)}$$
$$Q = \frac{\pi}{2\nu_z^3} \cot \pi\nu_z + \frac{\pi^2}{2\nu_z^2} \csc^2 \pi\nu_z$$

A. Bogomyagkov (BINP)

- Vertical orbit distortions produce beam energy shift.
- Vertical orbit distortions produce uncertainty of the beam energy.
- Beam energy shift dependence on vertical betatron frequency is small.