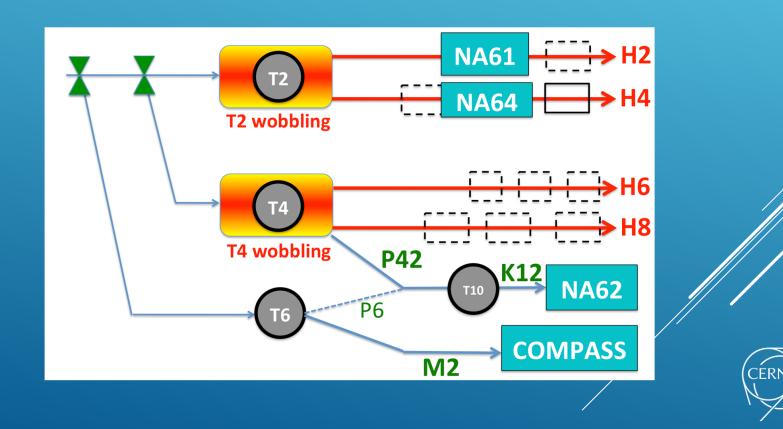
SECONDARY BEAMS AND EXPERIMENTAL AREAS

Sjoerd Reinhoudt & Thijs Hoevenaars

TABLE OF CONTENTS

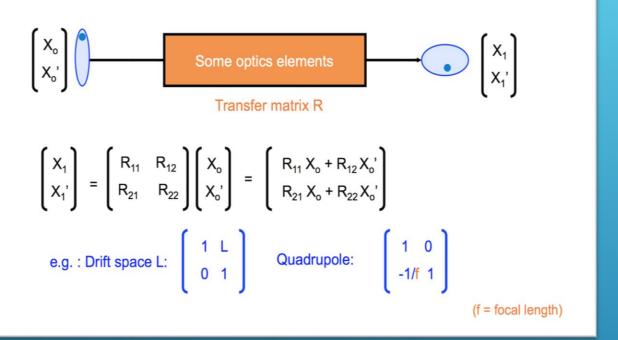

- Experimental Areas Group
- Beamline transport
- Beam Focus
- Beatch
- Transport and beamplot
- Focal point of P42
- Beam for KLEVER
- Why are particles with less energy better?

CERN

• The final assignment

EXPERIMENTAL AREAS GROUP

- Fixed Target experiments
- Advantages and Disadvantages of Fixed Target
- Mainly the East and North areas

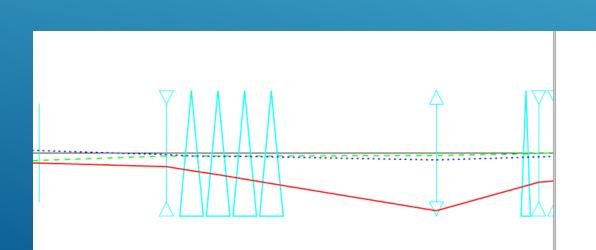

BEAMLINE TRANSPORT

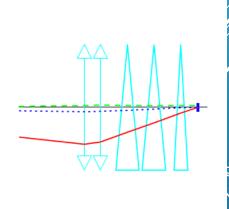
- The experimental area group is also responsible for the beamline transport, as we saw wednesday at COMPASS
- Several machines are used:
 - Quadrupole magnets
 - Dipole magnets
 - Detectors
- Computer programs

BEAM FOCUS

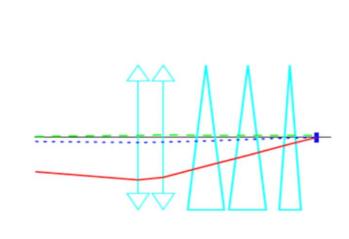
$$\begin{pmatrix} 1 & L_3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1/_{f_2} & 1 \end{pmatrix} \begin{pmatrix} 1 & L_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/_{f_1} & 1 \end{pmatrix} \begin{pmatrix} 1 & L_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_0 \\ X_0 \end{pmatrix}$$

BEATCH


- Geometry of the beam
- You can do it on paper, but beatch can calculate it for you
- We didn't use Beatch a lot, we calculated and drew the geometry by hand



TRANSPORT AND BEAMPLOT


- Optics of the beam
- Not every particle in the beam behaves the same
- Deviations in momentum, initial position and initial angles
- Transport does the calculations, beamplot visualizes three of said particles with deviations

FOCAL POINT OF P42

- Transport is used, the last three quadrupoles before the focal point are made variable in strength
- Transport then tries to find a solution
- The program failed the first time, because it came up with a solution in which a magnet would be stronger than possible
- Second time we put in a limit → program found an acceptable solution

BEAM FOR KLEVER

- K_{L}^{0} and Λ both decay into π^{0}
- KLEVER tries to measure the decay of K_{L}^{0}
- A is background noise
- Λ decays faster than K^0_L
- If the detector is placed correctly → less background
- Still too much background
- Bigger angle on primary target \rightarrow particles with less energy
- Less energy \rightarrow better

WHY ARE PARTICLES WITH LESS ENERGY BETTER? (1/2)

- Mean life \wedge (2,632 × 10⁻¹⁰ s) is way shorter than mean life K⁰_L (5,116 × 10⁻⁸ s)
- Angle of 2,4 mrad \rightarrow energies are high (\land > 130 GeV & K⁰_L > 80 GeV) and their mean lifes are different for observers (relativity)
- Makes mean life $\Lambda = 3,08 \times 10^{-8}$ s and mean life $K_{L}^{0} = 8,24 \times 10^{-6}$ s
- Average distance before decay is 9,24 m for Λ and 2,47 km for $K^0{}_{\rm L}$
- Still too much background, because detector has to be placed at less than 1 km

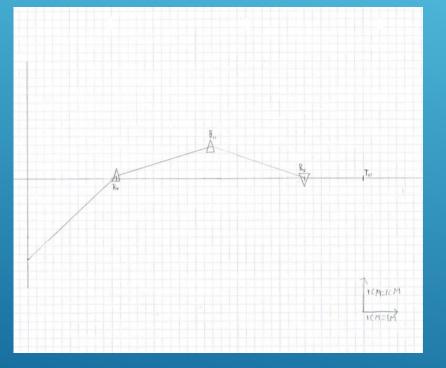
$$\tau' = \tau \times \gamma$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

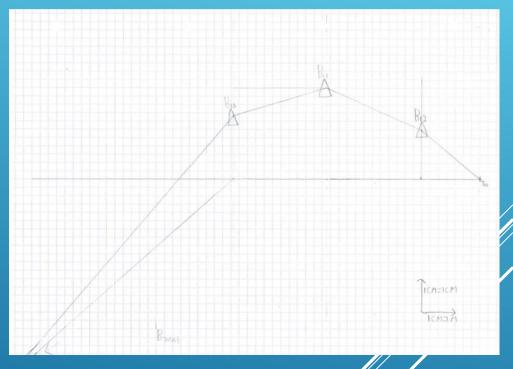
$$\beta = \frac{p}{\sqrt{p^2 + m^2}}$$
(CERN)

WHY ARE PARTICLES WITH LESS ENERGY BETTER? (2/2)

- Angle of 8,0 mrad \rightarrow resulting energies are much lower ($\Lambda \rightarrow 70$ GeV & $K_{L}^{0} \rightarrow 40$ GeV) and their mean lifes for observers are much lower as well
- Average travelling distance drops to 4,95 m for Λ and 1,23 km for $K^0{}_L$
- Much more of the Λ is already gone before the detector, and more of the $K^0{}_L$ decays inside the detector
- A lot less background, and the decay of the K⁰_L is better measurable


THE FINAL ASSIGNMENT (1/2)

- As stated before, we had to change the impact angle from 0 mrad to 8 mrad.
- To do so, an extra magnet had to be inserted about 61 metres before the target.
- This also changed the optics of the beam, so we used transport to change to currents in the magnets, so the focal point was exactly at T10.



THE FINAL ASSIGNMENT (2/2)

We had to go from this...

... to this

THE FINAL TRANSPORT FILE

5.0C 10.7 40.0 "019" 2.99 17.000 ; 3.0 20.0 90.0 ; 4.0 1.00 10.67 0.0 "NEWB" 20.0 -90.0 3.0 0.75 ; 5.0B 2.99 -5.91613 40.0 "020"; 0.44 ; 3.0 5.0B 40.0 "020"; 2.99 -5.91613 3.0 15.320 5.0A 2.99 6,97733 40.0 "021"; 0.44 ; 3.0 6.97733 5.0A 2.99 40.0 "021" ; 3.0 1.105 ; "TR10" ; 3.0 0.0 0.665 3.0 20.0 90.0 2.0 - 0.286;

715.730 3 720.730 4 **B8** 9.5339 721.390 3 726.390 **B8** 9.5339 4 727.049 3 732.049 B9 -3.92754 732,709 3 737.709 **B9** -3.9275 4 768.889 3 49.1970 771.879 019 5 788.879 3 NEWB 1.0670 789.879 4 790.629 3 Q20 793.619 5 -42.1072 794.059 3 797.049 5 020 -42.1072 812.369 Q21 41.1586 815.359 5 815.799 3 021 41.1586 818.789 5 819.894 **TR10** 819.894 3 820.559 3 B10 -9.2905 825.559 4 826,219 3 B11 -9.2905 831,219 4 832,927 3 835.927 4 B12 -4.6668 838.059 3 838.059 T10 3 838.059 T10 3

The output

The input

Thank you all for listening!

Any questions?

Special thanks to Lau Gatignon and the EN-EA group!

