GUINEA-PIG vs. GUINEA-PIG++

Dominik Aromiński

Acknowledgements: D. Schulte, B. Dalena, A. Latina, A. Sailer

CLIC beam physics meeting 21.12.2017

GUINEA-PIG vs. GUINEA-PIG++

21.12.2017 1 / 18

Overview

Q Guinea-Pig benchmarking

- Luminosity and background yields at 3 TeV example
- Summary and outlook

Dominik Arominski (CERN/WUT)

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction

- Guinea-Pig simulates the beams collisions and background creation & provides luminosity spectra for machine tuning
- Original manual available in Daniel's thesis
- The most recent report on Guinea-Pig available in Daniel's presentation
- Guinea-Pig++ description is available in LAL webpages: official documentation webpage (partially outdated) or Guinea-Pig++ report

< 回 > < 回 > < 回 >

Why move to Guinea-Pig++?

- It contains everything Guinea-Pig has and more
- Written modularily in C++ in an object-oriented paradigm
- Code is easier to maintain and add new features to the program; much easier to follow the information flow between objects than in large structural code
- Guinea-Pig++ runs calculations faster (\approx 20%) and is easier to optimize
- C++ became the standard for scientific code; it is more natural and better known to the new generation to physicists and developers

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

I/O differences

- The beam input files are the same for both codes, and are Placet-compatible if "load_beam = 3;" setting is used
- Some differences appear in additional options in the configuration file acc.dat
- There are some changes in file structure of output in Guinea-Pig++:
 - More robust output file with short descriptions or parameters
 - Incoherent pairs have one additional column with information about the process that lead to its creation
 - Units for beamstrahlung are in $\mu {\rm rad}$ instead of radians
- 17 columns in luminosity output files instead of 10; C++ version contains also the information about colliding particles' momenta and a label

I/O differences c'd

- The name change from "pairs" to "secondaries" as reported in documentation is not valid anymore, the Guinea-Pig-compatible version is the functional argument
- Added possibility to set the polarization vector for the beams
- Added switches for BMT precession and Sokolov-Ternov spin flip
- "Silent" argument does not exist as there is no screen outputting during simulation
- "lumi_p", "lumi_p_eg" and "_gg" arguments have to be specified in Guinea-Pig in order to have luminosity spectra for the other initial states which has the opposite effect in Guinea-Pig++

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Guinea-Pig++ new features

- Possible to track and store incoherent muon pairs
- Introduction of trident cascades along with coherent pairs
- Added depolarization due to Sokolov-Ternov spin flip, BMT spin precession
- More advanced treatment of bhabha electrons: boosting and rotating, described thoroughly in documents attached to Guinea-Pig++
- 64-bit random number generator with a possibility of choosing the random seed
- Automatic grid sizing based on beam sizes, offset settings and calculated deflection, though when used by me it seemed to have a substantial amount of particles in beam2 out of the grid
- Alternatively, one can use grid sizing based on beams read from file with "get_cuts_from_loaded_beam" or simply can choose the grid sizes as it was done in Guinea-Pig

Benchmarking assumptions

- $\bullet\,$ Newest available releases of Guinea-Pig: 1.4.4 for C-version and 1.2.1 for the C++
- Placet1 tracked the beams through CLIC 3 TeV, $L^* = 6$ m Beam Delivery System with energy spread depending on particle's position in the bunch
- \bullet Statistics used: 1 bunch train, \approx 300 bunch crossings for Guinea-Pig++, and 150 BX with Guinea-Pig
- Grid sizes: cuts at $12 \times 64 \times 3$ sigmas with granularity of $128 \times 640 \times 25$, and a $n_t = 1$

Dominik Arominski (CERN/WUT)

GUINEA-PIG vs. GUINEA-PIG++

Luminosity spectra in 3 TeV CLIC with $L^* = 6$ m

• Both versions predict comparable $(O(10^{-4}))$ values for e^+e^- luminosities

• The only discrepancy comes up in $\gamma\gamma$ interactions, which can be due to limited statistics

Dominik Arominski (CERN/WUT)

21.12.2017 9 / 18

Background yields in 3 TeV CLIC with $L^* = 6 \text{ m}$

background type	Guinea-Pig	Guinea-Pig++	unit
beamstrahlung γ	2.04	2.06	γ per beam particle
incoherent e^+e^- pairs	3.1	3.1	$(\cdot 10^5)$ per bunch crossing
coherent pairs	3.2	3.2	$(\cdot 10^7)$ per bunch crossing
$\gamma\gamma ightarrow$ hadrons events	2.9	3.0	events per bunch crossing

- Both versions predict comparable values for background yields
- The $\gamma\gamma \to$ hadrons discrepancy is linked with the luminosity spectrum difference; might be a statistics issue

Beamstrahlung photons distributions comparison

- The distributions of beamstrahlung photons are in good agreement between the two codes
- Beamstrahlung distribution is not a source of direct background, as required by the detector and delivery system designs

$\gamma\gamma \rightarrow$ hadrons distributions comparison

- $\gamma\gamma \, \to \, {\rm hadrons}$ events are in agreement in both codes, no significant discrepancies are found
- This background gives rise to increased occupancies in the detector

Incoherent pairs distributions comparison

- Both distributions are comparable, the Guinea-Pig++ one has more statistics
- Incoherent pairs especially irradiate the forward region of the detector

Coherent pairs distributions comparison

- Both distributions are comparable
- No direct hits are expected to be caused by coherent pairs
- The small differences in the distributions are attributable to the statistics effects

Guinea-Pig++ best practises

- It has been found that the C++ version sometimes produces highly deflected particles although it can be mitigated using a more strict approach to the input parameters and the beam quality, as advised by Barbara Dalena
- The grid size should be chosen to minimise the number of particles outside of it, depends on the beam quality and presence of tails
- Best longitudinal cut is in range of 3-3.35 σ_z , if it is too big some slices will have no charge
- Mesh granularity should be in range of 5-10 times the cut value in sigmas
- Two-beam simulations should be used for physics studies whenever possible, and leave one-beam for testing/debugging due to correlations between grid sizes and e.g. computed luminosity, which can be diluted this way, for more details see: CLIC Beam Physics Meeting 2 March 2017

Guinea-Pig developments since the last reports

- Truncation of numbers in output files led to rise of numerical errors and unwanted correlations
- The precision has been changed from 3 digits to 8 at the cost of large increase of storage space the output takes can be solved by changing the output from ASCII to binary files
- Change in Guinea-Pig++'s output for beamstrahlung photons to the one compatible with Guinea-Pig - added the information about photons positions

イロト イヨト イヨト ・

Summary

- Software validation of Guineapig++ and Guinea-Pig has been done and the codes give results that are in agreement with each other, except for a slight difference in $\gamma\gamma \rightarrow$ hadrons events which has not been observed before and can be due to limited statistics available
- One needs to take into account I/O differences when running simulations and parsing through the outputs
- All current results regarding background yields, luminosity and the files produced by Guineapig++ are available at the revived Beam-Beam website: <u>Beam-beam website</u>

Outlook:

 Migrate Guinea-Pig and all related CLIC Beam Physics repositories from SVN to GitLab and make them available to run on the Grid using CVMFS installations

イロト イポト イヨト イヨト

Thank you!

Dominik Arominski (CERN/WUT)

GUINEA-PIG vs. GUINEA-PIG++

 ▶
 ■
 ■

 </t

イロト イヨト イヨト イヨト

Backup

Dominik Arominski (CERN/WUT)

GUINEA-PIG vs. GUINEA-PIG++

 ↓ ↓ ■
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</t

イロト イヨト イヨト イヨト