Results: Boosted top quark pair production at multi-TeV CLIC (1.4/3 TeV)

CLICdp Analysis Meeting, February 22, 2018

Rickard Stroem, rickard.strom@cern.ch

Extraction of observables

- Updated equation with a more "natural and modern theoretical language"
- At tree level the three terms can be related to the cross sections for producing top-quark pairs with different helicity combinations for the two top quarks in the final state

$$
\frac{d \sigma}{d \cos \theta}=\sigma_{1}(1+\cos \theta)^{2}+\sigma_{2}(1-\cos \theta)^{2}+\sigma_{3}\left(1-\cos ^{2} \theta\right)
$$

Old parametrisation

$\frac{d \sigma}{d \cos \theta}=\frac{3}{8}\left(1+\cos ^{2} \theta\right) \sigma_{U}+\frac{3}{4} \sin ^{2} \theta \sigma_{L}+\left(\sigma_{U}+\sigma_{L}\right) A_{\mathrm{FB}} \cos \theta$

Extraction of observables

- Updated equation with a more "natural and modern theoretical language"
- At tree level the three terms can be related to the cross sections for producing top-quark pairs with different helicity combinations for the two top quarks in the final state

Derivation

$\sigma_{\mathrm{F}}=\int_{0}^{1} \frac{d \sigma}{d(\cos \theta)} d(\cos \theta)=\frac{1}{3}\left(7 \sigma_{1}+\sigma_{2}+2 \sigma_{3}\right)$,
$\sigma_{\mathrm{B}}=\int_{-1}^{0} \frac{d \sigma}{d(\cos \theta)} d(\cos \theta)=\frac{1}{3}\left(\sigma_{1}+7 \sigma_{2}+2 \sigma_{3}\right)$.

Observables

$$
\begin{aligned}
& \sigma_{\mathrm{tt}}=\sigma_{\mathrm{F}}+\sigma_{\mathrm{B}}=(4 / 3)\left(2 \sigma_{1}+2 \sigma_{2}+\sigma_{3}\right) . \\
& A_{\mathrm{FB}}=\frac{\sigma_{\mathrm{F}}-\sigma_{\mathrm{B}}}{\sigma_{\mathrm{F}}+\sigma_{\mathrm{B}}}=\frac{1}{\sigma_{\mathrm{t} \bar{t}}} 2\left(\sigma_{1}-\sigma_{2}\right) .
\end{aligned}
$$

Asymmetry extraction at 1.4 TeV

- Cross section and asymmetry extracted from fit (scaled to MC Truth level), statistical uncertainty from background taken into account through sqrt(S+B)
- Cross section uncertainty in parenthesis assumes uncorrelated errors

$\sqrt{ } \mathrm{s}^{\prime}[\mathrm{GeV}] 750 \mathrm{fb}^{-1}$	$\mathrm{A}_{\text {FB }}$ True***	A $_{\text {Fb }}$ Reco	σ^{*} True [fb]	-* Reco [fb]
>1200**	0.563	0.561 ± 0.018 (0.018)	18.41	18.45 ± 0.43 (1.08)
>1200	0.563	$0.561 \pm 0.018(0.033)$	18.41	18.45 ± 0.43 (0.97)
900-1200	0.551	0.550 ± 0.023 (0.043)	11.04	11.06 ± 0.33 (0.74)
400-900	0.452	$0.451 \pm 0.031(0.054)$	16.56	16.57 ± 0.62 (1.45)

[^0]
Asymmetry extraction at 1.4 TeV

- Cross section and asymmetry extracted from fit (scaled to MC Truth level), statistical uncertainty from background taken into account through sqrt(S+B)
- Cross section uncertainty in parenthesis assumes uncorrelated errors

$\sqrt{ } \mathrm{s}^{\prime}[\mathrm{GeV}] 750 \mathrm{fb}^{-1}$	$\mathrm{A}_{\text {FB }}$ True***	Aft Reco	σ^{*} True [fb]	o* Reco [fb]
>1200**	0.620	0.619 ± 0.019 (0.019)	9.83	9.86 ± 0.26 (0.64)
>1200	0.620	0.619 ± 0.019 (0.038)	9.83	9.86 ± 0.26 (0.57)
900-1200	0.607	0.608 ± 0.027 (0.058)	5.86	5.91 ± 0.22 (0.51)
400-900	0.523	0.513 ± 0.046 (0.078)	8.63	8.69 ± 0.45 (1.05)

[^1]
Asymmetry extraction at 3 TeV

- Asymmetry extracted from fit (scaled to MC Truth level), statistical uncertainty from background taken into account through sqrt(S+B)
- Cross section uncertainty extracted from sqrt(S+B)/S (fit results in parenthesis)
- Results at 3 TeV still with preliminary MVA cut

[^0]: *same values presented as last meeting (Alasdair adapted code to the same procedure as used here)
 **fit performed with old parametrisation ($A_{F B}$ from 1 parameter, cross section from 2). New parametrisation has $A_{F B}$ from 2 parameter, cross section from 3)
 ***extracted from count (will be updated)

[^1]: *same values presented as last meeting (Alasdair adapted code to the same procedure as used here)
 **fit performed with old parametrisation (AFB from 1 parameter, cross section from 2). New parametrisation has $A_{F B}$ from 2 parameter, cross section from 3)
 ***extracted from count (will be updated)

