

Results: Boosted top quark pair production at multi-TeV CLIC (1.4/3 TeV)

CLICdp Analysis Meeting, February 22, 2018

Rickard Stroem, rickard.strom@cern.ch

Extraction of observables

- Updated equation with a more "natural and modern theoretical language"
- At tree level the three terms can be related to the cross sections for producing top-quark pairs with different helicity combinations for the two top quarks in the final state

$$\frac{d\sigma}{d\cos\theta} = \sigma_1(1+\cos\theta)^2 + \sigma_2(1-\cos\theta)^2 + \sigma_3(1-\cos^2\theta)$$

Old parametrisation

$$\frac{d\sigma}{d\cos\theta} = \frac{3}{8}(1+\cos^2\theta)\sigma_U + \frac{3}{4}\sin^2\theta\sigma_L + (\sigma_U + \sigma_L)A_{\rm FB}\cos\theta$$

Extraction of observables

- Updated equation with a more "natural and modern theoretical language"
- At tree level the three terms can be related to the cross sections for producing top-quark pairs with different helicity combinations for the two top quarks in the final state

Derivation

$$\sigma_{\mathrm{F}} = \int_0^1 \frac{d\sigma}{d(\cos\theta)} d(\cos\theta) = \frac{1}{3} (7\,\sigma_1 + \sigma_2 + 2\,\sigma_3),$$

$$\sigma_{\rm B} = \int_{-1}^{0} \frac{d\sigma}{d(\cos\theta)} d(\cos\theta) = \frac{1}{3} (\sigma_1 + 7\sigma_2 + 2\sigma_3).$$

Observables

$$\sigma_{t\bar{t}} = \sigma_F + \sigma_B = (4/3)(2\,\sigma_1 + 2\,\sigma_2 + \sigma_3).$$

$$A_{\mathrm{FB}} = \frac{\sigma_{\mathrm{F}} - \sigma_{\mathrm{B}}}{\sigma_{\mathrm{F}} + \sigma_{\mathrm{B}}} = \frac{1}{\sigma_{\mathrm{t\bar{t}}}} 2(\sigma_{1} - \sigma_{2}).$$

Asymmetry extraction at 1.4 TeV

- Cross section and asymmetry extracted from fit (scaled to MC Truth level), statistical uncertainty from background taken into account through sqrt(S+B)
- Cross section uncertainty in parenthesis assumes uncorrelated errors

%	√s' [GeV] 750 fb ⁻¹	A _{FB} True***	A _{FB} Reco	σ* True [fb]	σ* Reco [fb]
%08	>1200**	0.563	$0.561 \pm 0.018 (0.018)$	18.41	18.45 ± 0.43 (1.08)
i II	>1200	0.563	$0.561 \pm 0.018 (0.033)$	18.41	18.45 ± 0.43 (0.97)
	900-1200	0.551	$0.550 \pm 0.023 (0.043)$	11.04	11.06 ± 0.33 (0.74)
P(e-)	400-900	0.452	$0.451 \pm 0.031 (0.054)$	16.56	16.57 ± 0.62 (1.45)

^{*}same values presented as last meeting (Alasdair adapted code to the same procedure as used here)

^{**}fit performed with old parametrisation (A_{FB} from 1 parameter, cross section from 2). New parametrisation has A_{FB} from 2 parameter, cross section from 3)

^{***}extracted from count (will be updated)

Asymmetry extraction at 1.4 TeV

- Cross section and asymmetry extracted from fit (scaled to MC Truth level), statistical uncertainty from background taken into account through sqrt(S+B)
- Cross section uncertainty in parenthesis assumes uncorrelated errors

%08	√s' [GeV] 750 fb ⁻¹	A _{FB} True***	A _{FB} Reco	σ* True [fb]	σ* Reco [fb]
\tilde{\t	>1200**	0.620	$0.619 \pm 0.019 (0.019)$	9.83	9.86 ± 0.26 (0.64)
+	>1200	0.620	$0.619 \pm 0.019 (0.038)$	9.83	9.86 ± 0.26 (0.57)
	900-1200	0.607	$0.608 \pm 0.027 (0.058)$	5.86	5.91 ± 0.22 (0.51)
P(e-)	400-900	0.523	$0.513 \pm 0.046 (0.078)$	8.63	8.69 ± 0.45 (1.05)

^{*}same values presented as last meeting (Alasdair adapted code to the same procedure as used here)

^{**}fit performed with old parametrisation (A_{FB} from 1 parameter, cross section from 2). New parametrisation has A_{FB} from 2 parameter, cross section from 3)

^{***}extracted from count (will be updated)

Asymmetry extraction at 3 TeV

- Asymmetry extracted from fit (scaled to MC Truth level), statistical uncertainty from background taken into account through sqrt(S+B)
- Cross section uncertainty extracted from sqrt(S+B)/S (fit results in parenthesis)
- Results at 3 TeV still with preliminary MVA cut

-80%	√s' [GeV] 1500 fb ⁻¹	A _{FB} True***	A _{FB} Reco	σ* True [fb]	σ* Reco [fb]
P(e ⁻) =	>2600	0.592	$0.586 \pm 0.09 (0.176)$	3.48	3.72 ± 0.53 (1.15)
+80%	√s' [GeV] 1500 fb ⁻¹	A _{FB} True***	A _{FB} Reco	σ* True [fb]	σ* Reco [fb]
P(e ⁻) =	>2600	pending	pending	pending	pending