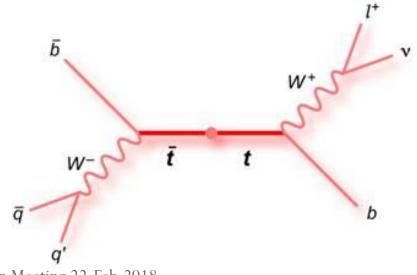
Determination of A_{FB}^t using boosted top tagging at 1.4TeV

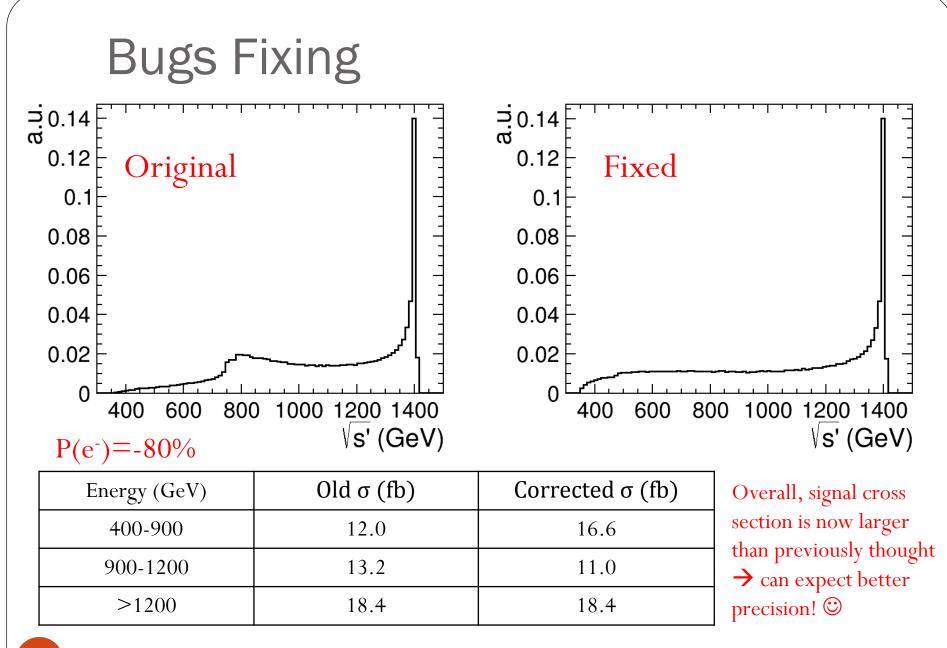
Alasdair Winter University of Birmingham CLICdp 22 Feb 2018



Overview

- Aims:
 - identify semileptonic $t\overline{t}$ decays at 1.4TeV
 - examine prospects for determining A_{FB}^t through measurement of the top angular distribution
- Boosted topology makes conventional top tagging techniques a challenge
 - b-tagging alone no longer viable!
- Approach is to use the concept of fat jets and look at jet substructure

Topics for today


- Correcting bugs:
 - Signal definition
 - S' determination

• First look at +80% polarization results

• Testing fitting techniques

Bug Fixing

- Two important bugs found- hadn't been spotted before as they are most significant at lower S', until now the two analysis only compared results at E>1200GeV
- S prime determination: bug in code meant that truth level s prime was being defined as the sum of the energies of the electron positron pair rather than the invariant mass of the pair- fixed now!
- Signal definition: algorithm for searching for ttbar pairs in qqqqlv sample was found to stop before trying all possible fermion combinations- resulted in true ttbar events being wrongly assigned to the single top sample- fixed!

Extracting A_{FB} and Statistical Uncertainty

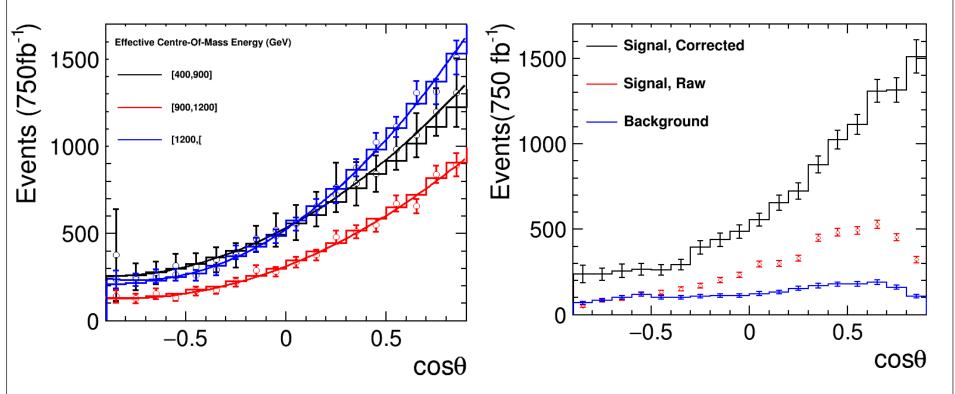
- 1. Split signal events into two samples- A and B
- 2. Level signal samples to all correspond to the same luminosity
- 3. Evaluate signal efficiencies post event selection using sample B
- 4. Subtract background & apply efficiency correction to sample A
 - Assume no uncertainty on efficiency or background subtraction as they can be modelled to arbitrary precision with enough MC
 - Fractional uncertainty on each bin = $\frac{\sqrt{S+B}}{S}$
- 5. Repeat process with samples inverted
- 6. Combine resulting $\cos\theta$ distribution

7. Fit to:
$$\frac{d\sigma}{dCos\theta} = \frac{3}{8}(1 + Cos^2\theta)\sigma_U + \frac{3}{4}(1 - Cos^2\theta)\sigma_L + A_{FB}\cos\theta\sigma_{Tot}$$

8. Scale uncertainty from fit to the nominal luminosity of 750fb⁻¹

Fit results

Polarization = -80%


Energy (GeV)	A _{FB} (True)	A _{FB} (Reco)	σ (True, fb)	σ (Reco, fb)
>1200	0.563	0.562 +/- 0.016	18.4	18.4 +/- 1.0
900-1200	0.547	0.547 +/- 0.019	11.0	11.0 +/- 0.7
400-900	0.457	0.456 +/- 0.038	16.6	16.6 +/- 2.1

Polarization = +80%

Energy (GeV)	A _{FB} (True)	A _{FB} (Reco)	σ (True, fb)	σ (Reco, fb)
>1200	0.621	0.619 +/- 0.020	9.8	9.9 +/- 0.7
900-1200	0.605	0.597 +/- 0.026	5.9	5.9 +/- 0.5
400-900	0.525	0.512 +/- 0.050	8.6	8.7 +/-1.7

Fit Results- P(e⁻)=-80%

• Example plots for the upcoming top paper

- LHS: histogram=generator level, points and fit = final reconstruction
- RHS: All data is at reconstructed level, E>1200GeV

Fitting techniques

- Fractional uncertainty on cross sections observed to be rather large
- Try to compare to just measuring significance, $\frac{\sqrt{S+B}}{S}$
- To rule out effects from background subtraction, signal efficiency, detector acceptance, look at generator level info

Energy (GeV)	$\sigma_{_{Fit}}(\mathrm{fb})$	Relative Err. From Fit (%)	$\frac{\sqrt{S+B}}{S} (\%)$
>1200	18.4	1.79	0.85
900-1200	11.0	2.33	1.10
400-900	16.6	1.94	0.90

• Fit clearly not providing best possible performance!

Alasdair Winter, CLICdp Meeting 22-Feb-2018

Fitting techniques

• Current approach uses a three parameter fit:

 $\frac{d\sigma}{d\cos\theta} = \frac{3}{8}(1 + \cos^2\theta)\sigma_U + \frac{3}{4}(1 - \cos^2\theta)\sigma_L + A_{FB}\cos\theta\sigma_{Tot}$

- Where σ_U , σ_L , σ_{Tot} are the unpolarised, longitudinally polarised and total cross sections, where $\sigma_{Tot} = \sigma_U + \sigma_L$
- Could see improvement in uncertainty if less parameters needed
- Try switching to alternative fit method:

$$\frac{d\sigma}{dCos\theta} = \sigma_{Tot} (1 + Cos^2\theta + \frac{8}{3}A_{FB}Cos\theta)$$

- Equivalent under the assumption $\sigma_U \gg \sigma_L$
- Currently see $\sigma_U \sim 35 \times \sigma_L$ for E>1200GeV

Fitting techniques- generator level

• Compare results from 3 parameter fit, 2 parameter fit and counting total events at generator level

Energy (GeV)	$\sigma_{3 \text{ Par Fit}} \atop (\text{fb})$	Rel. Err. (%)	$\sigma_{2 \text{ Par Fit}} (\text{fb})$	Rel. Err. (%)	σ_{Counting} (fb)	Rel. Err. (%)
>1200	18.42	1.79	18.41	0.85	18.42	0.85
900-1200	11.02	2.33	11.01	1.10	11.01	1.10
400-900	16.57	1.94	16.44	0.90	16.56	0.90
Energy (GeV)	Afb _{3 Par Fit}	Rel. Err. (%)	Afb _{2 Par Fit}	Rel. Err. (%)	Forward-Back Total	Rel. Err. (%)
	Afb _{3 Par Fit} 0.563		Afb _{2 Par Fit} 0.570			Rel. Err. (%) 1.25
(GeV)		(%)		(%)	Total	

- 2D fit shows bias in central values
 - More prominent for lower energy ($\sigma_U \gg \sigma_L$ assumption breaks down)
- 3D fit best for A_{FB}, not as good for cross section

Fitting techniques- Reco. Level

• Calculating the cross section from counting total events

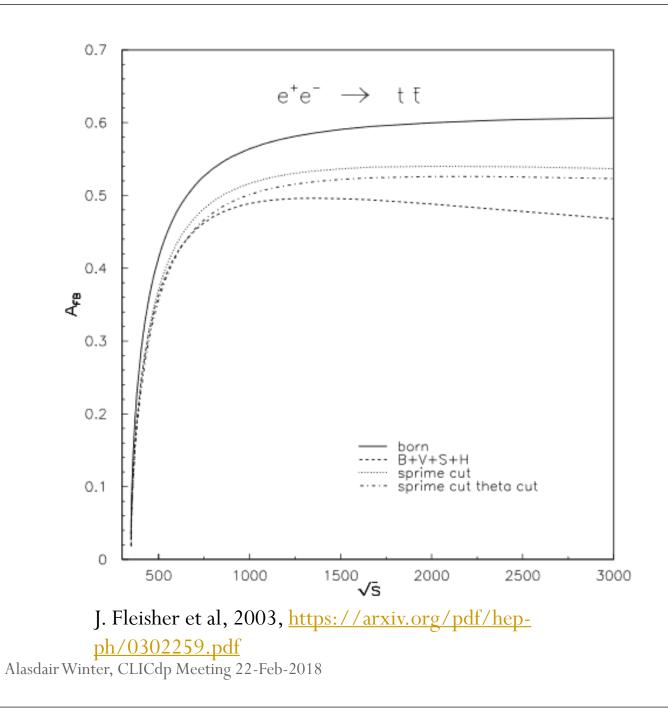
Energy (GeV)	$\sigma_{3 \text{ Par Fit}} \ ext{(fb)}$	Rel. Err. (%)	$\sigma_{\text{Counting}} (\text{fb})$	Rel. Err. (%)	sqrt(S+B)/S (%)
>1200	18.44	5.16	18.41	1.73	1.73
900-1200	11.03	6.14	11.01	2.09	2.09
400-900	16.59	12.74	16.56	4.09	4.09

- Results agree with truth level info (by construction)
- Vast improvement in cross section uncertainty

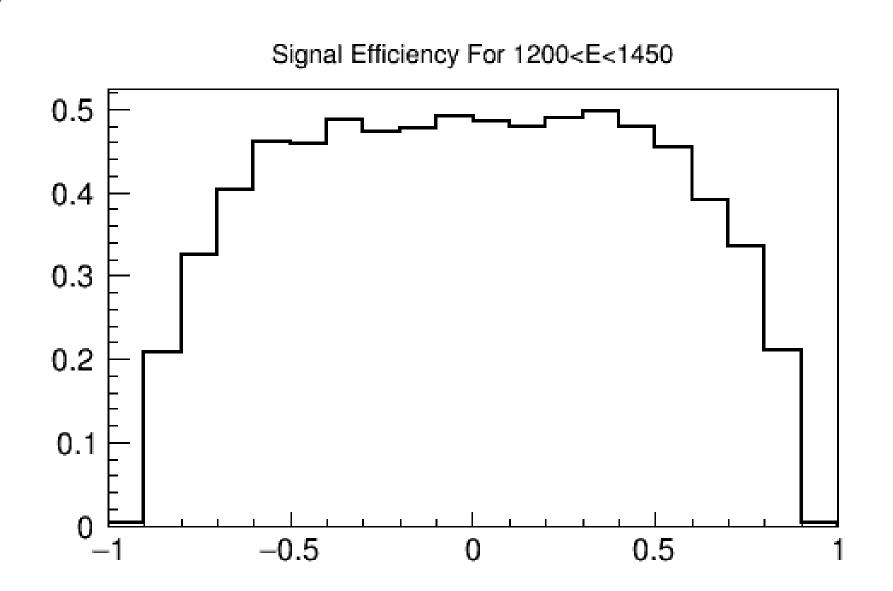
Final Results

 Optimal results come from using a 3D fit to extract A_{FB} but integrating the total distribution to calculate the cross section
Polarization = -80%

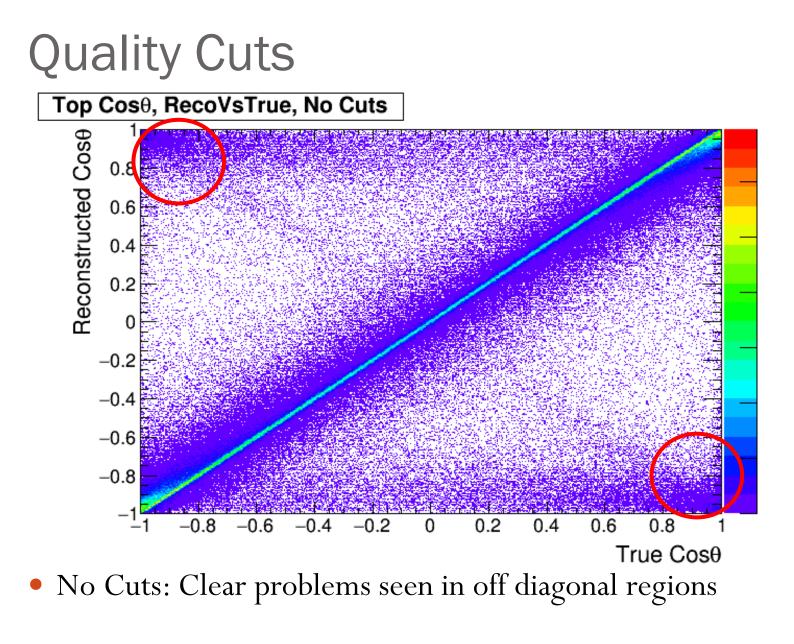
Energy (GeV)	A _{FB} (True)	A _{FB} (Reco)	σ (True, fb)	σ (Reco, fb)
>1200	0.563	0.562 +/- 0.016	18.4	18.4 +/- 0.3
900-1200	0.547	0.547 +/- 0.019	11.0	11.0 +/- 0.2
400-900	0.457	0.456 +/- 0.038	16.6	16.6 +/- 0.7

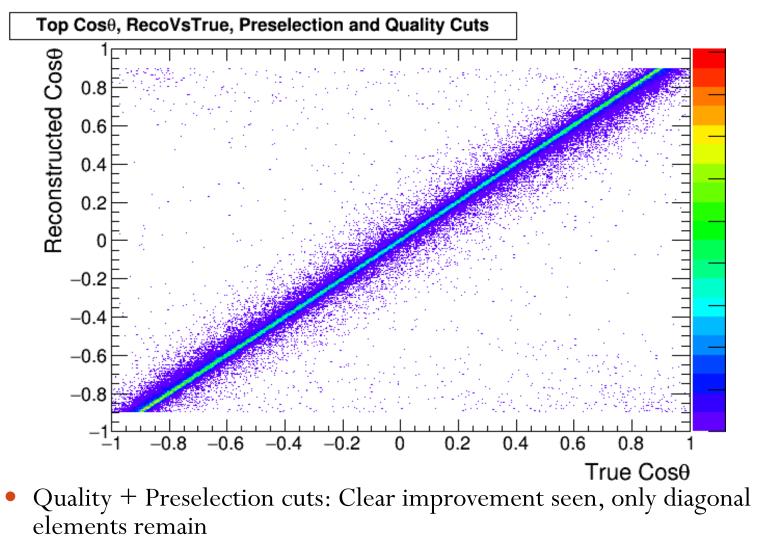

Polarization = +80%

Energy (GeV)	A _{FB} (True)	A _{FB} (Reco)	σ (True, fb)	σ (Reco, fb)
>1200	0.621	0.619 +/- 0.020	9.8	9.8 +/- 0.2
900-1200	0.605	0.597 +/- 0.026	5.9	5.9 +/- 0.2
400-900	0.525	0.512 +/- 0.050	8.6	8.6 +/- 0.5


Conclusions

- Bugs found in signal definition- now fixed $\textcircled{\odot}$
- Results for +80% polarization now included in analysis
- Studies into the performance of the fit suggest it works well for measuring A_{FB} , however integrating the total events works better for cross section
- Systematics need re-evaluated following bug fixes
 - Code already in place for much of this


Backup Slides



Alasdair Winter, CLICdp Meeting 22-Feb-2018

Quality Cuts

Quality Cuts

- Preselection Cuts (pre-existing to remove background events):
 - Visible Pt>200 GeV
 - Hadronic Top Energy>100 GeV
 - Leptonic B Jet Pt>20 GeV
 - -log(Y23)<7 && -log(Y34)<9
 - $abs(Top Cos\theta) < 0.9$
- Quality Cuts:
 - Hadronic Top Mass>100 GeV
 - Hadronic Top Pt>100 GeV
 - Leptonic B Jet Mass<100 GeV
 - 0.2<Collinearity of highest and next highest energy subjets<0.8
 - $-\log(Y23) > 3$
 - Pz Constraint from fit<100 GeV
- Currently use same cuts across full energy range
 - Need to tweak this slightly as some variables are energy dependent...

Variables currently used to train BDT

- Visible Energy and Pt
- Hadronic Fat Jet Energy and Pt
- Leptonic Fat Jet Mass
- Leptonic 1SubJettiness, 1SubJettiness/2SubJettiness
- Relative angle of the 3 subjets within hadronic fat jet
- Isolated lepton Energy, Pt and total momentum
- N Lepton candidates with E>30GeV
- Angular separation between lepton and hadronic fat jet
- -log(Y23)
- Major thrust
- Leptonic Top Energy
- Highest and next to highest btags