Delphes Card for CLICdet

Ulrike Schnoor

 $ulrike.schnoor@\,cern.ch$

CERN

Feb 22, 2018

Intro and News

News w.r.t. last presentation on the Delphes card in the analysis meeting January 16:

- Calorimeter resolutions for HCAL and ECAL (from Matthias Weber)
- Muon, Photon, and Electron identification efficiencies (from Matthias Weber)

B tagging added into the card, based on CLICap-Note-2014-002: 3

- working points: 50%, 70%, 90%
- Tau tagging based on LCD-2010-009 (Astrid Muennich) added to the card
- Refined tracking momentum resolutions for e, mu, pi: adjusted the binning as well as increase resolution in $\theta = 10^{\circ}$ case
- Electron ID efficiencies: more granular energy dependence implemented

Ulrike Schnoor (CERN) CLICdet Delphes Card 2/35

Calorimeter resolutions

Given in terms of absolute ΔE as $\Delta E = \sqrt{n^2 + s^2 E + c^2 E^2}$ with noise term n, stochastic term s, constant term c and can be binned in η

Resolution for HCAL from neutral kaons up to E = 85 GeV (Matthias Weber):

- Inner Barrel $|\eta| < 0.3$ n = 1.38, s = 0.308, c = 0.050
- Barrel (0.3 < $|\eta|$ < 0.78) : n = 1.25, s = 0.322, c = 0.048
- Transition (0.78 $< |\eta| < 1.1$): n = 1.159, s = 0.341, c = 0.049
- Endcap (1.1 < $|\eta|$ < 3): n = 1.09, s = 0.319, c = 0.052

Resolution for ECAL from photons up to E = 50 GeV (Matthias Weber):

- Barrel ($|\eta| < 0.78$): s = 0.156, $c = 0.0099 \rightarrow 0.01$
- Transition (0.78 $< |\eta| < 0.83$): s = 0.176, $c = 2e 7 \rightarrow 0.01$
- Endcap (0.83 $< |\eta| < 3$): s = 0.151, $c = 0.0057 \rightarrow 0.01$
- Set constant terms to 0.01

Electron, muon, and photon efficiency and isolation

- Electron, photon, muon candidates are identified among Particle Flow objects
- Isolated e, μ , γ are removed from the PFOs which are passed to jet finding using a UniqueObjectFinder module
- Isolation is determined according to jet content in a DeltaR cone (ΔR = 0.5) with a maximum pT ratio between the cone and the isolated object of 0.12
- Identification efficiencies from Matthias Weber (talk at CLICWEEK 2018) → next slide

Ulrike Schnoor (CERN) CLICdet Delphes Card 4/35

Electron, muon, and photon efficiency and isolation

Electrons

for $E < 3 \, \text{GeV}$: $\epsilon = 0$ above $3 \, \text{GeV}$, ID efficiencies are derived for 11 bins in energy, with 6 bins in η each

Muons

for $E < 2\,\text{GeV}$: $\epsilon = 0$ for $2 < E < 50 \,\text{GeV}$: $|\eta|$ > 1.95 0.73> 0.20.98< 0.20.87for $E > 50 \,\text{GeV}$: $\epsilon = 0.999$ 0.95 nal muon identification efficiency. E=10 GeV 0.8 0.75 $cos\theta_{true}$

Photons

for E < 2 GeV: $\epsilon = 0$ for $E \ge 2$ GeV: $|\eta| < 0.7$: $\epsilon = 0.94$ for $0.7 < |\eta| < 3$: $\epsilon = 0.9$

Tracking efficiency

- Input: charged Hadrons/electrons/muons from ParticlePropagator for charged hadrons/electrons/muons
- Efficiencies read off from Emilia's plots (see backup)
- NEW: binning in energy adjusted

Muons $\theta[^{\circ}]$	E/GeV	ϵ
09 910 910 910 1012 1012	any > 80 580 < 5 > 5 > 1, < 5 > 1	0 0.994 0.996 0.996 1 0.999

Electrons $\theta[^{\circ}]$	E /GeV	ϵ
910	≥ 80	0.993
913	580	0.998
1011	≥ 80	0.997
1190	≥ 80	1.0
1390	580	1.0
1150	< 5	0.997
5090	< 5	0.999

Pions E/GeV	$\theta[^{\circ}]$	ϵ
>= 80 380 380 < 3 < 3	990 911 1190 960 6090	1.000 0.994 1.000 0.000 1.0000

Ulrike Schnoor (CERN) CLICdet Delphes Card 6/38

Momentum resolution

- Applied by retrieving a random variable r from a Gaussian with mean=0, sigma=1
- Multiplying $\exp(r) \times p_T = p_T'$
- $\rightarrow p_T'$ is log-normally distributed (its logarithm is Gaussian distributed)
- Fit parameters for $\frac{\Delta p_T}{p_T^2}$ provided by Emilia Leogrande

Resolution formula implemented in Delphes card as $\frac{\Delta p_T}{p_T} = a \oplus b/(p \sin \theta)$

- NEW Modified binning in η with bin edges now: 2.66, 1.74, 1.01, 0.55, 0.18,
- NEW Factor 2 for resolution for $\theta = 10^{\circ}$ (see diagrams why)

Ulrike Schnoor (CERN) CLICdet Delphes Card 7/35

Tau tagging

from LCD-2010-009 (Astrid Muennich)

• Mis-ID of quark jets as τ candidates

x axis: variation of selection cuts

- figure is not very conclusive
- use mis-ID rate \approx 3 % globally

Tau tagging efficiencies

Tau tagging efficiency from LCD-2010-009 (Astrid Muennich)

- Efficiencies: average of efficiencies for the three processes above
- PT bins: 2.5 x seed pT

p₁ seed (GeV)	≥ 2	≥ 5	≥ 10	≥ 20	≥ 30	≥ 50	≥ 100
$p_{T}(au)$ (GeV)	≥ 5	≥ 12.5	≥ 25	≥ 50	≥ 75	≥ 125	≥ 250
ϵ	0.84	0.79	0.74	0.66	0.61	0.51	0.36

Ulrike Schnoor (CERN) CLICdet Delphes Card 9/35

Performance

- Validate performance using HZ with $Z \rightarrow qq$, $H \rightarrow$ inclusive at 350 GeV
- Jets from VLC N=4, R=1 are used unless noted otherwise
- Leptons in full simulation obtained with isolated object finder
- 9400 is the DSID of the full simulation from January pilot production

Ulrike Schnoor (CERN) CLICdet Delphes Card 10/35

Electron performance - all events Electrons

- In total more electrons in Delphes than in full sim → efficiencies too high?
- PT spectrum not well modeled in low pT bins
- Delphes: More electrons in forward regions than in full simulation
- Could be related to: Tracking efficiencies (unlikely), ID efficiencies, overlap removal in Delphes, isolation in full simulation or in Delphes → investigating

Ulrike Schnoor (CERN) CLICdet Delphes Card 11/35

Muon performance - all events Muons

- More forward $|\eta|$ muons, more smaller pT muons in Delphes than in full simulation
- Introducing $\epsilon^{ID}=0$ for E<2 GeV has improved the spectrum, but a large mismodeling remains
- PT perfectly well modeled above $p_T > 25 \, \text{GeV}$
- Could be related to:
 Tracking efficiencies (unlikely),
 ID efficiencies, overlap removal in Delphes,
 isolation in full simulation or in Delphes

$H ightarrow \mu \mu$ events only

Selecting $H o \mu \mu$ based on truth information

Fit results (Gaussian):

```
Delphes m_H = 125.9 \,\text{GeV}; \sigma_m = 2.08 \,\text{GeV}
Full sim m_H = 126.0 \,\text{GeV}; \sigma_m = 3.18 \,\text{GeV}
```

- ⇒ Delphes less smeared (width 0.65 of full sim)
 - This is probably an effect of the muon mismodeling mentioned above
 - Mean value in good agreement with 126 GeV

Ulrike Schnoor (CERN) CLICdet Delphes Card 13/35

Jets performance - all events Jets

- jets are in good agreement:
- up to 5% differences above $p_T > 10 \,\text{GeV}$
- good agreement in η up to $|\eta| \approx$ 1.7, up to 10% differences at forward $|\eta|$

Derived observables performance - all events

- m(Z) is determined as:
 - N=3,4,5 jet clustering
 - pick the two jets with mjj closest to mZ
- ⇒ Difference in mZ up to 5% in area close to Z peak; up to 15 20% further away
 - Recoil mass calculated from this Z candidate
 - Up to $\approx 5\,\%$ differences in peak and reflection peak
 - 10 20% difference in tails

Ulrike Schnoor (CERN) CLICdet Delphes Card 15/35

Derived observables performance - all events

- Using N=4 jets clustering, mqq(H) is the invariant mass of the two jets remaining after assigning the two Z jets \Rightarrow in \approx 50% of cases, this corresponds to the $H \to b\bar{b}$ jets
- No selection $\Rightarrow M(\mu\mu)$ includes $H \to ZZ \to \mu\mu xx$ and other muons
 - Mainly to many muons in the low di-muon mass range

Ulrike Schnoor (CERN) CLICdet Delphes Card 16/35

Jet multiplicity observables – no selection

- y_{23}, y_{34} are measures of how well the event can be forced into 2/3/4 jets
- Often used for preselection cuts in multijet final states
- They are well modeled except for the very first bin(s) and a slight shift the higher values for Delphes

Ulrike Schnoor (CERN) CLICdet Delphes Card 17/35

Jets performance investigated

Most likely the remaining differences in jet performance are related to underpopulated areas in pT- η (jets) plane:

Full sim

Delphes

Possible reason: effect of overlay background?

Ulrike Schnoor (CERN) CLICdet Delphes Card 18/35

Is it an effect of $\gamma\gamma \rightarrow$ hadrons background?

Test this hypothesis by using R=0.5 jets instead of R=1 as used in the rest of these slides

Smaller Jet radius: less overlay impact

- The agreement is better for R=0.5 than for R=1
- \Rightarrow This indicates that it is in fact an effect of the $\gamma\gamma$ \to hadrons background
- Will be checked also with a higher-energy sample (3 TeV)

Ulrike Schnoor (CERN) CLICdet Delphes Card 20/35

Performance with jet pT cut All jets required to have $p_T > 10 \, \text{GeV}$

Ulrike Schnoor (CERN)

CLICdet Delphes Card

Conclusions

Current status

- Tracking efficiency and resolution as well as calorimeter resolution regarded as frozen
- Effects of $\gamma\gamma\to$ hadrons background might require some additional jet smearing at higher energies (under investigation)
- Lepton ID efficiencies to be improved

Ulrike Schnoor (CERN) CLICdet Delphes Card 22/35

Backup

Additional information

Documentation and links

- My fork on github: https://github.com/uschnoor/delphes
- Documentation: https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook
- How to use the current code with MadGraph (CLICdet adjustments not yet shipped with official code):
- https://twiki.cern.ch/twiki/bin/view/CLIC/DelphesMadgraphForBSMReport

 Existing ILD card:
- https://cp3.irmp.ucl.ac.be/projects/delphes/browser/git/cards/delphes_card_ILD.tcl
- Delphes for e+ e- Collider Studies: http: //ias.ust.hk/program/shared_doc/2017/201701hep/HEP_20170116_Chris_Potter.pdf
- Intro to Delphes http: //indico.ihep.ac.cn/event/2813/session/5/contribution/7/material/slides/0.pdf
- How to run: ./DelphesSTDHEP cards/delphes_card_CLICdet.tcl out_2556_1.root hzqq_gen_2556_1.stdhep

Ulrike Schnoor (CERN) CLICdet Delphes Card 24/35

Delphes General

- Fast detector simulation using a parametrization of the detector geometry, detector response and reconstruction of composite objects including efficiencies
- Configuration files (="detector cards") based on tcl scripting language
- Various detector cards already available, eg. CMS, ILD
- Based on C++, ROOT, tcl
- Modular system describing detector components and their performance

Ulrike Schnoor (CERN) CLICdet Delphes Card 25/35

Delphes Data Flow

 $https://cp3.irmp.ucl.ac.be/projects/delphes/\\wiki/WorkBook/DataFlowDiagram$

- Particles lists stored in arrays which can be merged and filtered
- Can also be interfaced to Pythia8 (in case no parton shower applied yet)
- Can be run on LHEF, StdHEP, hepmc
- Changed Data Flow to exclude isolated leptons from jet clustering input (using a UniqueObjectFinder)
- Output: ROOT Tree with resulting particles

Ulrike Schnoor (CERN) CLICdet Delphes Card 26/35

Modules and Exectution path

- ExecutionPath fixes the order of the modules
- Then, each module is defined specific to CLICdet
- Typically, each module has at least one input array (which particles it acts on) and at least one output array and several parameters which can be adapted to the detector model

ExecutionPath

- ParticlePropagator
- TrackingEfficiency for charged Hadrons, Electrons, Muons
- Momentum Smearing for charged Hadrons, Electrons, Muons
- TrackMerger
- Calorimeters (ECal, HCal)
- Mergers, Filters (EFlowMerger, EFlowFilter)
- Photons: Efficiency and Isolation
- Electrons: Filter, Efficiency, Isolation
- charged Hadrons: Filter
- Muons: Efficiency, Isolation
- UniqueObjectFinder to remove isolated e, μ , γ from jet input
- NeutrinoFilter
- Jets: FastJetFinders for Valencia algorithm (VLC)
- MissingET (MissingET, GenMissingET)
- (JetEnergyScale)
- JetFlavorAssociation, BTagging, and TauTagging
- ScalarHT
- TreeWriter

ParticlePropagator

Propagates charged and neutral particles from the interaction point through the magnetic field into the calorimeters defined by Radius (r_{min}) and HalfLength (z_{min})

- Parameters (Table 1 of CLICdet-Note-2017-001)
 - Radius = inner radius of calorimeter barrel CLICdet: Radius = ECAL barrel r_{min} (m) = 1.5
 - HalfLength = z coordinate of first endcap calorimeter layer CLICdet: HalfLength = ECAL endcap z_{min} (m) = 2.31
 - magnetic field (T)
 CLICdet: Bz = 4.0 T
- OutputArray split into chargedHadrons, electrons, muons

Ulrike Schnoor (CERN) CLICdet Delphes Card 29/35

Tracking efficiency

- Tracking efficiency is applied by drawing a random number r from a uniform distribution [0,1], using $r<\epsilon$ to decide whether the track is kept
- Numbers based on tracking results from Emilia Leogrande
- Muon results already reported in Emilia's LCWS talk

Ulrike Schnoor (CERN) CLICdet Delphes Card 30/35

Calorimeters

- Use "SimpleCalorimeter" modules for ECAL and HCAL because this allows different granularity of ECAL and HCAL
- Fills calorimeter towers, performs calorimeter resolution smearing, pre-selects towers hit by photons and performs a particle flow algorithm
- Implemented calorimeter segmentation and resolution into the CLICdet card:

Geometry from CLICdp-Note-2017-001:

Table 13: HCAL overall layout as implemented in the simulation model.

Table 11: ECAL layout as implemented in the simulation model.

,	
ECAL barrel rmin [mm]	1500
ECAL barrel r_{max} [mm]	1702
ECAL barrel zmax [mm]	2210
ECAL endcap/plug zmin [mm]	2307
ECAL endcap/plug zmax [mm]	2509
ECAL endcap r_{\min} [mm]	410
ECAL endcap r_{max} [mm]	1700
ECAL plug r_{\min} [mm]	260
ECAL plug r _{max} [mm]	380

iCAL overali iayout as illiplemented ili ti	ie siiiit
HCAL barrel rmin [mm]	1740
HCAL barrel r_{max} [mm]	3330
HCAL barrel zmax [mm]	2210
HCAL endcap z_{min} [mm]	2539
HCAL endcap z_{max} [mm]	4129
HCAL endcap r_{\min} [mm]	250
HCAL endcap r_{max} [mm]	3246
HCAL ring z_{min} [mm]	2360
HCAL ring z_{max} [mm]	2539
HCAL ring r_{min} [mm]	1730
HCAL ring r_{max} [mm]	3246
LumiCal cutout in HCAL rmax [mm]	180
LumiCal cutout in HCAL ztot [mm]	200

Calorimeters segmentation

- Cell sizes: 5mm x 5 mm in ECAL, 30 mm x 30 mm in HCAL
- Calculated the following $\Delta\eta$ and $\Delta\phi$ segmentations corresponding to these cell sizes and the layouts given in tables 11 and 13

Part	$\eta_{ extit{max}}$	cell size (mm)	$\Delta\phi[^{\circ}]$	Δη
ECAL barrel	1.2	5	0.2	0.003
ECAL endcaps	2.5	5	0.8	0.02
ECAL plug	3.0	5	1.0	0.02
HCAL barrel	0.8	30	1	0.02
HCAL ring	0.9	30	1	0.02
HCAL endcaps	3.5	30	6	0.1

Implemented correspondingly in the Delphes card

Ulrike Schnoor (CERN) CLICdet Delphes Card 32/35

Jet finding

- Introduced into Delphes the VLC contribs from fastjet to implement Valencia jet algorithm
- → my pull request has been merged into the central Delphes repository
 - In the card:
 - VLC with $\beta = \gamma = 1.0$
 - R = 0.5, 0.7, 1.0, 1.2, 1.5
 - Exclusive clustering with N = 2,3,4,5,6
 - Jet energy scale is assumed to be 1.0

B and c tagging

- First, a jet flavor association module is run, which assigns a flavor to a jet by checking partons inside a ΔR cone around the jet
- ightarrow checked the ΔR for b, c quarks and VLC(R=1, N=4): Peak close to 0 is likely from actual b(c) jets, other contributions are non-b(c) jets \Rightarrow choose $\Delta R = 0.5$ to avoid contamination

(might need to be re-checked after all smearing is implemented correctly; don't expect big changes)

Ulrike Schnoor (CERN) CLICdet Delphes Card 34/35

B, c, and tau tagging

- If a b(c) truth jet is found inside the ΔR cone, it is b(c)-tagged according to the efficiencies we provide based on random numbers thrown by Delphes
- Efficiencies and misidentification rates from *CLICap-Note-2014-002* for 3 working points added to the card
- \bullet au tagging still missing

