S

Multi-bunch status update

J. Komppula, K. Li, G. Rumolo, M. Schenk

é Brief reminder

e First multi-bunch PyHEADTAIL version completed in summer 2016 (s.
PyYyHEADTAIL Meeting #12)

* Parallelized multi-bunch PyHEADTAIL version benchmarked during scrubbing
run 2017 (along with test suite) — tests done on laptops/desktop PCs

* With the availability of the CERN HPC cluster, first time deployment of multi-
bunch PyHEADTAIL for large scale problems = possibility to evaluate scaling

 Several bottlenecks identified leading to poor scaling. Parallel activities on
multi-bunch feedback finally led to synergies and significant optimizations of
the parallel multi-bunch PyHEADTAIL version (= Jani)

* Review:
o Basic principles
o Modifications/additions

1/15/2018 HSC - Kevin Li ‘m‘

é Parallelization

* OpenMP

* Multithreading simple loops (trig. functions evaluation, dot products etc.)

OpenMP

Enabling HPC since 1997

1/15/2018 HSC - Kevin Li

é Parallelization

* OpenMP

* Multithreading simple loops (trig. functions evaluation, dot products etc.)

* MPI OpenMP

Enabling HPC since 1997

* Where strongly memory limited, e.g. multi bunch wakes and feedback

processor 1

1. Perform parallel processor 2

tracking for all bunches

processor 3

1/15/2018 HSC - Kevin Li

Parallelization

S

* OpenMP
* Multithreading simple loops (trig. functions evaluation, dot products etc.)

* MPI OpenMP

* Where strongly memory limited, e.g. multi bunch wakes and feedback

processor 1

processor 2

1. Perform parallel
tracking for all bunches

2. Collect slice data from
all other processes

MPI_Allgather

©= O= O
QQQ

1/15/2018 HSC - Kevin Li

processor 3

é Parallelization

* OpenMP

* Multithreading simple loops (trig. functions evaluation, dot products etc.)

* MPI OpenMP

Enabling HPC since 1997

* Where strongly memory limited, e.g. multi bunch wakes and feedback

cessor 1
pro processor 2

1. Perform parallel
tracking for all bunches

2. Collect slice data from
all other processes

3. Continue parallel
tracking for all bunches

processor 3

1/15/2018 HSC - Kevin Li

é Parallelization

* OpenMP

* Multithreading simple loops (trig. functions evaluation, dot products etc.)

. MPI OpenMP

Enabling HPC since 1997

* Where strongly memory limited, e.g. multi bunch wakes and feedback

* CUDA
* Parallelization of simple loops via context manager S NVIDIA.
 Space charge PIC solvers CUDA.

User Script

Simulation Setup

Context aware region

Context Manager
with GPU(bunch) :

CPU Implementation

Tracking Element
object.track(bunch)

GPU Implementation

1/15/2018 ' HSC-Kevin Li

é Overview

* Particle beams generation based on multiple bunches generation (via
list of bunch parameters and filling scheme)

* Possibility via bunch_id to quickly extract and re-insert individual
bunches from and back into beam

* Parallel wake kick computations are broadcasting only slice data -
MPI management done via new mpi_data module which takes care of
layout and distribution of this slice data

1/15/2018 HSC - Kevin Li ‘m‘

S

* Macroparticle tracking in phase space = independent and
embarrassingly parallel

1/15/2018

Parallel tracking

=== ring

CO0000OOO000000

HSC - Kevin Li

é Parallel tracking

* Macroparticle tracking in phase space = independent and
embarrassingly parallel

e ring

* Wake field kicks = convolution <M, W>

* Every slice acts as source for every other slice = collective interaction among
slices via the wake field

5 n_slices
e
Azl = o 3202 X My 2] [WLz — 25| f(@a, y4)
Y =0

knowledge of slice moments and locations needs to be shared
1/15/2018 HSC - Kevin Li ‘

S

* Macroparticle tracking in phase space = independent and
embarrassingly parallel

1/15/2018

Parallel tracking

=== ring

CO0000OOO000000

HSC - Kevin Li

@ Parallel structures

* Multi-bunch beam generation (via binary-tree algorithm = 10s for full LHC)

ooo

1/15/2018 HSC - Kevin Li ‘m‘

@ Parallel structures

* Multi-bunch beam generation (via binary-tree algorithm = 10s for full LHC)

Independent tracking of macroparticles
within all bunches on each processor
/

rr

Procassor no. 1 Processor no. 2

1/15/2018 HSC - Kevin Li ‘m‘

@ Parallel structures

* Multi-bunch beam generation (via binary-tree algorithm = 10s for full LHC)

Independent tracking of macroparticles
within all bunches on each processor
/

rr

Procassor no. 1 Processor no. 2

Merge into a parallel aware data structure containing mformatlon

of slice Iocations and moments broadcasted

n_slices
Azl = - ﬁQ 5
ypeC

! X S My (23] WLz — 25| £, i)
knowledge of slice locations and moments needs to be shared m
1/15/2018 HSC - Kevin Li ‘

@ Parallel structures

* Multi-bunch beam generation (via binary-tree algorithm = 10s for full LHC)

| Communication via an MPI_Allgather call

| | | |
Merge into a parallel aware data structure containing information

of slice Iocations and moments broadcasted
n shces
a:’.
mqfﬁ2c2

i X S a:yzj ' J_Zi_zj ﬁjz;yz
knowledge of slice locations and moments needs to be shared I@
1/15/2018 HSC - Kevin Li ‘

@ Parallel structures

* Multi-bunch beam generation (via binary-tree algorithm = 10s for full LHC)

Independent tracking of macroparticles
within all bunches on each processor
/

AN L
Once broadcasted, perform computation of wake kicks for all slices on every ‘

processor:

for zt in target bunches:
for k in xrange (n_ turns):
for zs in source bunches:
accumulated kicks t += ~ <M(zs), W(zt - zs - kC)>

n_slices
S L Y D] TS ¥/

J

knowledge of slice locations and moments needs to be shared m
1/15/2018 HSC - Kevin Li ‘

File Edit View Mavigate Code Refactor Run Tools VCS

lel structures
am —> 10s for full LHC)

PYHEADTAIL ; "% mpi = mpi_data.py ;

s Structure

e Multi-bunch beam ¥ ¥ @ = = &£ T

my_rank()

num_procs()
split_tasks(tasks)
my_tasks(tasks)
share_numbers{my_number)

= mpi_data.py

Once broadcasted

share_arrays(my_array)

share_array_lists(my_arrays)
mpi_type_to_numpy_type{data_type)
numpy_type_to_mpi_type{data_type)
MpiArrayShare{object)

£ Mpisniffer{object)

£ MpiGatherer{object)

il - - mm mm mm = = = -

for zt in target bul
for k in xrange

for zs in s¢
accumule

£ BunchDataAccess{object)
£ TotalDataAccess{object)

ing of macroparticles
s on each processor

r all slices on every

- kC)>

* | 1 1

.6

All encapsulated and managed nicely via new MPI_data

module

knowledge of slice locations and moments needs to be shared

1/15/2018 HSC - Kevin Li

%

é Parallel structures

* Multi-bunch beam generation (via binary-tree algorithm = 10s for full LHC)

Independent tracking of macroparticles
within all bunches on each processor
/
= AN L

Once broadcasted, perform computation of wake kicks for all slices on every 6
processor:

for zt in target bunches:
for k in xrange (n_ turns):
for zs in source bunches:
accumulated kicks t += ~<M(zs), W(zt - zs - kC)>

3 3 3 3 3 3

Generic and robust solution, but expensive as number of
bunches increases. More room for optimization...

knowledge of slice locations and moments needs to be shared I@
1/15/2018 HSC - Kevin Li g

@ Optimizations

* With a slight change of perspective/reference frame, significant speed-
ups can be obtained

e ring

Change of perspective!

Freeze coordinate system as given by ring geometry.

1/15/2018 HSC - Kevin Li

@ Optimizations

* With a slight change of perspective/reference frame, significant speed-
ups can be obtained

s ring
— ring
— slicing - fixed

Change of perspective!

Freeze coordinate system as given by ring geometry.
Slicing determined entirely by ring geometry.

1/15/2018 HSC - Kevin Li

S

Optimizations

* With a slight change of perspective/reference frame, significant speed-
ups can be obtained

s ring
— ring
— slicing - fixed

AN ALV VURW ik YA
‘ ML ‘U ,
{)

\ T‘ "
- A' M

* We identify a bunch harmonic number (i.) defined by the RF frequency
(synchrotron harmonic number) and the bunch spacing (i.e. 3564 for the

LHC or 924 for the SPS)

« We sample the wake function at fixed slices (ii.) around the bunch
harmonic number locations. This generates a reusable wake function

look-up table...
1/15/2018 HSC - Kevin Li @‘

¢

@ Optimizations

* With a slight change of perspective/reference frame, significant speed-
ups can be obtained

s ring
— ring
— slicing - fixed

\ slice_ix O

‘ncy
the

INC I JJ)
7

« We sample the wake function at fixed slices (ii.) around the bunch
harmonic number locations. This generates a reusable wake function

look-up table...
1/15/2018 HSC - Kevin Li m‘

é Optimizations

* With a slight change of perspective/reference frame, significant speed-
ups can be obtained

e ring
— ring
sp— slicing - fixed

* Filling individual buckets with bunches, we can now deploy the FFT
convolution which scales much better, effectively moving from O(n”2) to
O(n log(n))

1/15/2018 HSC - Kevin Li ‘@g

é Parallel version — catches

* Some splitting and merging required : .
. o « e PYHEADTAIL | articles ; = particles.py »
(= in particular for slicing) B

-

W

& T
& particles.py
v arange

e Extract bunches was slow... in % mean

v std

Com pa rison to rather fa St € ParticlesView(Printing)
t ra C kl n g/CO nVO I U t | O n "‘;;;r:ltﬁ_{self. macroparticlenumber, particlenumber_per_mp, charge, mass, circumference, gamm
B x(self, value)
P‘}xp{self]
* Improved using split function which § xplself, value)

B yiself)

internally deploys masks via a bunch B y(self, value)
index — still requires copying of lots of " ypisel

P ypiself, value)
data . D‘}z{self]

P z(self value)

g dp(self)

B dp(self, value)

* Final improvement using memory & intensity(selh
views (like pointers), instead > bunch B intensitytsel value

D')gamma{self]

is a specific view on a portion of the & gammatecf valus
beam. No copying required and thus ¥ beta(sel

B beta(self, value)

Ve ry fa St. F’ betagammaiself)

B betagammalself, value)
P'}pO(seIf]

* Need to understand how to handle ¥ potsef, value

g z_beamframe(self)

this when trying to integrate GPU ¢ 2_beamframetsl value)
support for these features. " get-coords.nmomenta_dic(sel 8

m get_slices(self, slicer, *args, **kwargs)

m extract_slices(self, slicer, include_non_sliced="if_any', reference=False, *args, **kwargs)

1/15/2018 HSC - Kevin Li NV‘

Parallel version — tests

Parallelized PyHEADTAIL multi-bunch, multi-turn wakes
with 11 bunches over 6 turns on 8 processors... :D!

0000000000 00000000000 00000000000 00000000000 00000000000 00000000000

CO00000000K /00000000000 ' 00000000000 00000000000 00000000000 00000000000
1 1 1 1 1
00000000000 :oooooooouo :oooooooom :oooooooouo :oooooooom :oooooooom

=
o

(o) B w]

Bunch profiles
[normalized]
N

©c o o o ©
~

o

1lel3

=
o

0.5

Wake field
[arb. units]
o
o

|
o«
ul

Wake field kick
[normalized]

Time [s] le-6

1/15/2018 HSC - Kevin Li

@ Motivation

* Transverse feedback studies for the FCC-hh
* Coupled bunch instabilities, injection oscillations, etc

 Realistic models for a beam and a transverse feedback system
— PyHEADTAIL
* New feedback module
e Multibunch PyHEADTAIL

¥

» Schematic of an
§ 80-100 km
long tunnel

1/15/2018 HSC - Kevin Li

Q Challenges

PyYHEADTAIL simulation:

Beam energy 7 TeV 50 TeV
- 500k macro partlcles Circumference 26.7 km 97.7 km
- 100 slices
-Qp Betatron tunes 64.28/59.31 111.31/109.32
S ¢ EED (@D
RF harmonic 130680
—> ~0.5 s / turn, 500k turns
Max N bunches 3564 13068

* Linear scaling to the full LHC simulation:
— 600 cores, 3 s/ turn (practical limit)

* Local 4 core simulations - ~1000 bunches per core
— every 1 ms per bunch - 1 s in the total tracking time

This is not easy but...

e ... 0(n”2) algorithms are the absolute evil:
* Each bunch interacts with all the other bunches - O(n”2) algorithm!
* 13068 b A2 =170 000 000 times slower! (years per turn)

1/15/2018 HSC - Kevin Li @g

S

Transverse tracking limited
- good parallelization

CERN HPC-batch

Scaling — tests

\

Turn tracking time [s]

Macroparticles
1 | per bunch:

512k
256k
128k
64k
32k
8k
2k

:!

10131

HL-LHC HOM test:
- 3564 bunches

-Qp =10

Wake limited
- poor parallelization

1/15/2018

|
128
N cores

HSC - Kevin Li

256

- 3 turn wakes

- 20 slices per bunch

%

Q Scaling — tests

FCC impedance model with 13068 bunches — turn-by-turn snapshots

0.03

Wake file 11/2017

0.02

0.01

0.00 |

—0.01 |

Bunch position

—-0.02

~0.03 |-

0.01

0.00 |-

Bunch position

—0.01

—-0.02 -

1 | 1 | 1 I
0 2000 4000 6000 8000 10000 12000

Bucket #
1/15/2018 HSC - Kevin Li g

S

A) PYHEADTAIL vs NHT vs theory

Im Aw/wg

0.012" 1.97 GHz HL-LHC HOM

0.010

0.008
— no damper

0.006 — 50turn

0.004+

0.002

~20 ~10 0 10 20 ¢

C) PyHEADTAIL wakes vs Sacherer

Benchmarking — tests

B) PyHEADTAIL wakes vs math

Minimalistic point-like-bunch code
(tracking and wakes ~10 lines of code)

2.0

15}F

10

0.

(]

0.0

-0.5F

Bunch position

-1oF — Pomt bunch, turn 0

M ‘]
15l -',t?"ﬂ‘ - - PyHEADTAIL, tuno || | °?
50 ﬁE\ — Point bunch, turn 1500 L 0o
' ' PyHEADTAIL turn 1500 i
=02 1 1
_2'50 L Il

200 400 600 BOO 1000
Bucket # —04r

800 820 840 860 880 900
Bucket #

Cumulative numerical error <0.5% after 1500 turns

A factor of ~15 difference between Sacherer and PyHEADTAIL

However:
PyHEADTAIL wake kick = coef = iFFT(FFT

mean_x) * FFT]wake function))

=/= Sacherer modes = beam impedance

‘ Hypotheses: The difference can be understood analyfically

1/15/2018 HSC - Kevin Li

%

FCC-hh studies

Full FCC-hh beam chroma scan 0.0035 Data: <|bunch.mean_x/y|> .
. | ¢ ¢ x-plane, 3.3 TeV
0.0030 -+ “|® ¢ y-plane, 3.3 TeV [
= 0.0025 [t L SRR S]
5 } : :
= 00020 4 [S
© ¢ ¢ ; :
i A\ ! f f
g 00015 foocfon IR IR _—
s ¢ ¢ |
G 0.0010 -t O T
: e i
0.0005 L. oo ‘ ______
0.0000 ? i i
. . . 0 5 10 15 20
Injection emittance growth Chroma
Time [us] Time [ps]
-2 0 2 4 6 ., 16 18 20 22 -2 0 2 4 6 o 16 18 20 22
14 |- - Damping time | 14 - Damping time [
1 O‘P'S' e « 10 turns - QP_S' « « 10turns
N without wakes « « 20turns N with wakes « « 20turns
% 10 b - « ¢ 40 turns (] i—“- 10 | _ « » 40 turns |
s 80 turns s 80 turns
[(o
5 8l - 160 turns |7 & 8 - 160 turns |7
@ Ly
V] U
g °r 1 &8 °r - I
H b e e e e e omf (e e 0w e o mm o em e e mm mm mm mm Em e Em e Em o = e = Y =
5§ af § £ al .]
Injected .
2r batch l 2r w. - |
0 !] L 1] 0] |ﬁ| vy]] 1
12400 125 0 100 200 e 12400 12500 12600 0 100 200

Bucket ID Bucket ID

é Status

* Performance is sufficient
e Full SPSbeam - No problem!
 LHC MD studies - Easy!

e LHC fullbeam - From easy (10k ppb)
to (500k ppb)

* FCC-hh -2

* Benchmarking promising
* Against other codes - 0K
e Against math - 0K
e Against Sacherer -

* ... but the multibunch version is still a development branch
* Bunch monitors are sometimes unstable
* Behind the master branch
* Changes to the core functions were needed :(
e Some parts might need cleaning and reprogramming

- merging needs some work

1/15/2018 HSC - Kevin Li

Backup

