
Multi-bunch status update

J. Komppula, K. Li, G. Rumolo, M. Schenk

Brief reminder

• First multi-bunch PyHEADTAIL version completed in summer 2016 (s.
PyHEADTAIL Meeting #12)

• Parallelized multi-bunch PyHEADTAIL version benchmarked during scrubbing
run 2017 (along with test suite) – tests done on laptops/desktop PCs

• With the availability of the CERN HPC cluster, first time deployment of multi-
bunch PyHEADTAIL for large scale problems possibility to evaluate scaling

• Several bottlenecks identified leading to poor scaling. Parallel activities on
multi-bunch feedback finally led to synergies and significant optimizations of
the parallel multi-bunch PyHEADTAIL version ( Jani)

• Review:
o Basic principles

oModifications/additions

1/15/2018 HSC - Kevin Li

Parallelization

• OpenMP
• Multithreading simple loops (trig. functions evaluation, dot products etc.)

1/15/2018 HSC - Kevin Li

Parallelization

• OpenMP
• Multithreading simple loops (trig. functions evaluation, dot products etc.)

• MPI
• Where strongly memory limited, e.g. multi bunch wakes and feedback

1. Perform parallel
tracking for all bunches

processor 1 processor 2

processor 3

1/15/2018 HSC - Kevin Li

Parallelization

• OpenMP
• Multithreading simple loops (trig. functions evaluation, dot products etc.)

• MPI
• Where strongly memory limited, e.g. multi bunch wakes and feedback

1. Perform parallel
tracking for all bunches

2. Collect slice data from
all other processes

processor 1 processor 2

processor 3

shared data

1/15/2018 HSC - Kevin Li

Parallelization

• OpenMP
• Multithreading simple loops (trig. functions evaluation, dot products etc.)

• MPI
• Where strongly memory limited, e.g. multi bunch wakes and feedback

1. Perform parallel
tracking for all bunches

2. Collect slice data from
all other processes

3. Continue parallel
tracking for all bunches

processor 1 processor 2

processor 3

1/15/2018 HSC - Kevin Li

Parallelization

• OpenMP
• Multithreading simple loops (trig. functions evaluation, dot products etc.)

• MPI
• Where strongly memory limited, e.g. multi bunch wakes and feedback

• CUDA
• Parallelization of simple loops via context manager

• Space charge PIC solvers

1/15/2018 HSC - Kevin Li

Overview

• Particle beams generation based on multiple bunches generation (via
list of bunch parameters and filling scheme)

• Possibility via bunch_id to quickly extract and re-insert individual
bunches from and back into beam

• Parallel wake kick computations are broadcasting only slice data -
MPI management done via new mpi_data module which takes care of
layout and distribution of this slice data

1/15/2018 HSC - Kevin Li

• Macroparticle tracking in phase space  independent and
embarrassingly parallel

Parallel tracking

1/15/2018 HSC - Kevin Li

• Macroparticle tracking in phase space  independent and
embarrassingly parallel

• Wake field kicks  convolution <M, W>
• Every slice acts as source for every other slice  collective interaction among

slices via the wake field

Parallel tracking

1/15/2018 HSC - Kevin Li

knowledge of slice moments and locations needs to be shared

• Macroparticle tracking in phase space  independent and
embarrassingly parallel

Parallel tracking

1/15/2018 HSC - Kevin Li

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Independent tracking of macroparticles
within all bunches on each processor

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Independent tracking of macroparticles
within all bunches on each processor

Merge into a parallel aware data structure containing information
of slice locations and moments - broadcasted

knowledge of slice locations and moments needs to be shared

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Independent tracking of macroparticles
within all bunches on each processor

Merge into a parallel aware data structure containing information
of slice locations and moments - broadcasted

knowledge of slice locations and moments needs to be shared

Communication via an MPI_Allgather call

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Independent tracking of macroparticles
within all bunches on each processor

Once broadcasted, perform computation of wake kicks for all slices on every
processor:

for zt in target_bunches:

for k in xrange(n_turns):

for zs in source_bunches:

accumulated_kicks_t += ~ <M(zs), W(zt – zs - kC)>

knowledge of slice locations and moments needs to be shared

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Independent tracking of macroparticles
within all bunches on each processor

Once broadcasted, perform computation of wake kicks for all slices on every
processor:

for zt in target_bunches:

for k in xrange(n_turns):

for zs in source_bunches:

accumulated_kicks_t += ~<M(zs), W(zt – zs - kC)>

knowledge of slice locations and moments needs to be shared

All encapsulated and managed nicely via new MPI_data
module

Parallel structures
• Multi-bunch beam generation (via binary-tree algorithm  10s for full LHC)

1/15/2018 HSC - Kevin Li

Independent tracking of macroparticles
within all bunches on each processor

Once broadcasted, perform computation of wake kicks for all slices on every
processor:

for zt in target_bunches:

for k in xrange(n_turns):

for zs in source_bunches:

accumulated_kicks_t += ~<M(zs), W(zt – zs - kC)>

knowledge of slice locations and moments needs to be shared

Generic and robust solution, but expensive as number of
bunches increases. More room for optimization…

Optimizations
• With a slight change of perspective/reference frame, significant speed-

ups can be obtained

1/15/2018 HSC - Kevin Li

Change of perspective!
Freeze coordinate system as given by ring geometry.

Optimizations
• With a slight change of perspective/reference frame, significant speed-

ups can be obtained

1/15/2018 HSC - Kevin Li

Change of perspective!
Freeze coordinate system as given by ring geometry.

Slicing determined entirely by ring geometry.

Optimizations
• With a slight change of perspective/reference frame, significant speed-

ups can be obtained

• We identify a bunch harmonic number (i.) defined by the RF frequency
(synchrotron harmonic number) and the bunch spacing (i.e. 3564 for the
LHC or 924 for the SPS)

• We sample the wake function at fixed slices (ii.) around the bunch
harmonic number locations. This generates a reusable wake function
look-up table…

1/15/2018 HSC - Kevin Li

Optimizations
• With a slight change of perspective/reference frame, significant speed-

ups can be obtained

• We identify a bunch harmonic number (i.) defined by the RF frequency
(synchrotron harmonic number) and the bunch spacing (i.e. 3564 for the
LHC or 924 for the SPS)

• We sample the wake function at fixed slices (ii.) around the bunch
harmonic number locations. This generates a reusable wake function
look-up table…

1/15/2018 HSC - Kevin Li

\ slice _ix
h_ix

0 1 2 3 4 5 6

0 … … … … … … …

1 … … … … … … …

2 … … … … … … …

3 … … … … … … …

4 … … … … … … …

5 … … … … … … …

6 … … … … … … …

Optimizations
• With a slight change of perspective/reference frame, significant speed-

ups can be obtained

• Filling individual buckets with bunches, we can now deploy the FFT
convolution which scales much better, effectively moving from O(n^2) to
O(n log(n))

1/15/2018 HSC - Kevin Li

Parallel version – catches
• Some splitting and merging required

( in particular for slicing)

• Extract bunches was slow… in
comparison to rather fast
tracking/convolution

• Improved using split function which
internally deploys masks via a bunch
index – still requires copying of lots of
data.

• Final improvement using memory
views (like pointers), instead  bunch
is a specific view on a portion of the
beam. No copying required and thus
very fast.

• Need to understand how to handle
this when trying to integrate GPU
support for these features.

1/15/2018 HSC - Kevin Li

Parallel version – tests

1/15/2018 HSC - Kevin Li

Motivation

• Transverse feedback studies for the FCC-hh
• Coupled bunch instabilities, injection oscillations, etc

• Realistic models for a beam and a transverse feedback system
→ PyHEADTAIL
• New feedback module

• Multibunch PyHEADTAIL

1/15/2018 HSC - Kevin Li

Challenges

• Linear scaling to the full LHC simulation:
→ 600 cores, 3 s / turn (practical limit)

• Local 4 core simulations → ~1000 bunches per core
→ every 1 ms per bunch → 1 s in the total tracking time

This is not easy but...

• … O(n^2) algorithms are the absolute evil:
• Each bunch interacts with all the other bunches → O(n^2) algorithm!

• 13 068 b ^2 = 170 000 000 times slower! (years per turn)

1/15/2018 HSC - Kevin Li

LHC FCC-hh

Beam energy 7 TeV 50 TeV

Circumference 26.7 km 97.7 km

Betatron tunes 64.28/59.31 111.31/109.32

RF harmonic 35640 130680

Max N bunches 3564 13068

Typical single bunch
PyHEADTAIL simulation:

- 500k macro particles
- 100 slices
- Qp
- wakes
→ ~0.5 s / turn, 500k turns

Scaling – tests

1/15/2018 HSC - Kevin Li

CERN HPC-batch

HL-LHC HOM test:
- 3564 bunches
- Qp = 10
- 3 turn wakes
- 20 slices per bunch

Transverse tracking limited
→ good parallelization

Wake limited
→ poor parallelization

Scaling – tests
FCC impedance model with 13068 bunches – turn-by-turn snapshots

1/15/2018 HSC - Kevin Li

A factor of ~1.5 difference between Sacherer and PyHEADTAIL

However:

PyHEADTAIL wake kick ≈ coef * iFFT(FFT(mean_x) * FFT(wake function))

Hypotheses: The difference can be understood analytically

Benchmarking – tests

1/15/2018 HSC - Kevin Li

A) PyHEADTAIL vs NHT vs theory

1.97 GHz HL-LHC HOM

C) PyHEADTAIL wakes vs Sacherer

B) PyHEADTAIL wakes vs math

Minimalistic point-like-bunch code
(tracking and wakes ~10 lines of code)

Cumulative numerical error <0.5% after 1500 turns

≈ beam impedance≈/= Sacherer modes

FCC-hh studies

1/15/2018 HSC - Kevin Li

Full FCC-hh beam chroma scan

Qp=5,
with wakes

Qp=5,
without wakes

Injection emittance growth

Injected
batch

Status

1/15/2018 HSC - Kevin Li

• Performance is sufficient
• Full SPS beam → No problem!
• LHC MD studies → Easy!
• LHC full beam → From easy (10k ppb)

to if you really need (500k ppb)
• FCC-hh → It was the goal!

• Benchmarking promising
• Against other codes → OK
• Against math → OK
• Against Sacherer → In progress

• … but the multibunch version is still a development branch
• Bunch monitors are sometimes unstable
• Behind the master branch
• Changes to the core functions were needed :(
• Some parts might need cleaning and reprogramming

→ merging needs some work

Backup

