Imperial College London

Standard Model Higgs Boson Properties Measurements

Seth Zenz, on behalf of the ATLAS and CMS Collaborations

SUSY 2018 23 July 2018

- Introduction
- Couplings to ZZ and $\gamma\gamma$: precision measurements
 - Higgs Mass and Width
 - Measurements in kinematic bins
- Couplings to fermions: discoveries and searches
 - Bottom Quarks
 - T Leptons
 - Top Quarks
- Combined measurements

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions

The Higgs field

- ...Interacts with gauge bosons to leave two massive vector bosons (V), a massless photon (y) and a scalar Higgs boson (h)
- ...Interacts with 3 generations of fermions (f), giving them each a mass proportional to its Higgs-fermion coupling

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions

The Higgs field

- ...Interacts with gauge bosons to leave two massive vector bosons (V), a massless photon (y) and a scalar Higgs boson (h)
- ...Interacts with 3 generations of fermions (f), giving them each a mass proportional to its Higgs-fermion coupling

Now that we know the Higgs mass, the SM predicts all interaction rates, so we can test:

- Decay Rates
- Production Cross Sections

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions
 - Decay Rates

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions
 - Decay Rates

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions
 - Decay Rates

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions
 - Decay Rates

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions
 - Decay Rates
 - Production Cross Sections

S. Zenz - SM Higgs Boson

- The Higgs boson is a window of discovery for new particles and interactions
- Why? The Standard Model (SM) precisely predicts Higgs interactions
 - Decay Rates
 - Production Cross Sections
- Do these rates agree with the SM? If not, there are new particles and interactions!

Higgs Mass

124.79 ± 0.36 (stat) ±0.05 (syst) GeV

125.26 ± 0.20 (stat) ± 0.08 (syst) GeV

124.93 ± 0.21 (stat) ± 0.34 (syst) GeV

- CMS H to 4ℓ: 125.26 ± 0.21 GeV
- ATLAS Run 2 Combined: I 24.86 ± 0.27 GeV
- ATLAS Run I + Run 2: 124.97 ± 0.24 GeV

Higgs Width

- SM Width: 4 MeV
- Direct limit: CMS H \rightarrow ZZ^(*) \rightarrow 4 ℓ : Γ_{H} < 1.1 GeV (95% CL)
- From on-shell/off-shell cross section ratio (ATLAS): $\Gamma_{H} < 14.4 \text{ MeV}$
 - Combines $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow ZZ^{(*)} \rightarrow 2\ell 2\nu$
 - Assumes effective couplings are the same in both on and off-shell

Higgs Width

- SM Width: 4 MeV
- Direct limit: CMS H \rightarrow ZZ^(*) \rightarrow 4 ℓ : Γ_{H} < 1.1 GeV (95% CL)
- From on-shell/off-shell cross section ratio (ATLAS): $\Gamma_{H} < 14.4 \text{ MeV}$
 - Combines $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow ZZ^{(*)} \rightarrow 2\ell 2\nu$
 - Assumes effective couplings are the same in both on and off-shell

Simplified Template Cross Sections

- Measure Higgs cross sections by production mode and kinematic bins
- More straightforward to reinterpret results in specific BSM models

Differential Distributions

- Fully unfolded distributions binned in kinematic properties
- Higgs events, defined phase space

$VH, H \rightarrow bb$

80 fb⁻¹

- Largest decay mode with challenging backgrounds reduced through:
 - Vector boson: 0, 1, or 2 leptons
 - High p_T selection
 - Main discriminants in BDT: m(bb), pT(V) and $\Delta R(bb)$

ATLAS-CONF-2018-036

18

VH and $H \rightarrow bb$ Observation

- Run 2VH, $H \rightarrow bb$ significance: 4.9 σ (4.3 σ expected)
- Combined with Run I: 4.9 σ (5.1 σ expected)
- Combined with VBF(+ggF) and ttH analyses: 5.4 σ (5.5 σ exp.)
- VH production combination with $\gamma\gamma$, ZZ*: 5.3 σ (4.8 σ expected)

Boosted Higgs in Gluon Fusion

- Large radius jet with with two btagged subjets
- pT > 450 GeV
- Higgs excess 1.5σ
 (0.7σ expected)
- Such "Higgs-tagging" techniques applicable to BSM events containing Higgs bosons

$H \rightarrow \tau \tau$ Observations

- Run I: $H \rightarrow \tau \tau$ observation achieved by combining ATLAS+CMS
- 2016 data: independent observations from both experiments
- CMS (ATLAS) has 9 (13) categories to cover hadronic and leptonic T decays and high p_T regions

ttH Production

- Identification of ttH production combines many decays
 - ttH-tagged channels from $\gamma\gamma$ and 4ℓ : pure but low rate

ttH Production

- Identification of ttH production combines many decays
 - ttH-tagged channels from $\gamma\gamma$ and 4ℓ : pure but low rate
- ttH multi-lepton: $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu, H \rightarrow \tau \tau, H \rightarrow ZZ^*$

Three lepton: complex but highly sensitive topology

CMS arXiv:1803.05485 ATLAS Phys.Rev.D.97(2018)072003

23 July, 2018

ttH Observation

CMS 5.2σ (4.2σ expected) Run I + 2016
 ATLAS 6.3σ (5.1σ expected) Run I + 2015-17

ttH Observation

CMS 5.2σ (4.2σ expected) Run I + 2016
 ATLAS 6.3σ (5.1σ expected) Run I + 2015-17

Single Top Production

- Rare production in SM due to interference: roughly 70 fb
- CMS Result combines:
 - tH multilepton channel
 - $tH, H \rightarrow bb$
 - Reinterpretation of ttH categories from $H \rightarrow \gamma \gamma$
- Given SM ttH yield and acceptance $\mu_{tH} < 26.5$ (13.6 exp.)

CMS-PAS-HIG-18-009

95% C.I.

-10

0

10

20

μ_{tH}^{best-fit}: +10.2

30

 $\frac{40}{\mu_{tH}}$

Combined Results

By Production and Decay

- Several possible choices for model parameters allowed to account for SM deviations in combinations
- Ratios of cross sections and branching ratios cancel out some uncertainties

Benchmark Model Fits

- K's scale effective couplings to particular particles
- K_{V (KF}): all bosons (fermions) scaled together
- gluon and γ loops: may be resolved or use an effective couplings
- Can reinterpret in context of specific models, e.g. hMSSM below

S. Zenz - SM Higgs Boson

Conclusions

- Main production and decay modes from discovery era have now all been observed individually
 - gluon fusion,VH,VBF, and ttH production
 - vector boson, photon, and 3rd generation fermion decays
- Next discovery targets: rare production modes, 2nd generation
- Run 2 dataset allows an increasing range of precision measurements
- The Higgs looks a lot like the SM so far... but the LHC is only just getting started!

Extras

CMS ZZ to 4ℓ Mass

No $m(Z_1)$ constraint	3D: $\mathcal{L}(m_{4\ell}, \mathcal{D}_{mass}, \mathcal{D}_{bkg}^{kin})$	2D: $\mathcal{L}(m_{4\ell}, \mathcal{D}_{mass})$	1D: $\mathcal{L}(m_{4\ell})$
Expected $m_{\rm H}$ uncertainty change	+8.1%	+11%	+21%
Observed $m_{\rm H}$ (GeV)	$125.28 {\pm} 0.22$	$125.36 {\pm} 0.24$	$125.39 {\pm} 0.25$
With $m(Z_1)$ constraint	3D: $\mathcal{L}(m'_{4\ell}, \mathcal{D}'_{mass}, \mathcal{D}^{kin}_{bkg})$	2D: $\mathcal{L}(m'_{4\ell}, \mathcal{D}'_{mass})$	1D: $\mathcal{L}(m'_{4\ell})$
Expected $m_{\rm H}$ uncertainty change		+3.2%	+11%
Observed $m_{\rm H}$ (GeV)	$125.26 {\pm} 0.21$	$125.30{\pm}0.21$	$125.34{\pm}0.23$

υ

S. Zenz - SM Higgs Boson

$H \rightarrow \mu \mu$ Searches

- Events categorized to enhance S/B: based on muon $\eta(\mu)$, $p_T(\mu\mu)$, BDT to enhance VBF
- Background from sidebands

Limits on ratio of cross section to SM: ATLAS: $\mu_{\mu\mu} < 2.1$ (2.0 exp.) CMS: $\mu_{\mu\mu}$ < 2.95 (2.45 exp.)

