ᅷ

SEARCHES FOR STRONG SUSY PRODUCTION

Hannsjörg Weber (Fermilab)

on behalf of the ATLAS and CMS collaborations

Strong SUSY production

- Strong production has been and still is one of the benchmarks in SUSY searches.
- Should be easy: "look for high p_T particles and large missing energy and you can't miss it."
- As we haven't found SUSY (yet), the landscape is changing now:
 - Lower cross sections (e.g. electroweak SUSY)
 - \rightarrow the next talk
 - More complex signatures (e.g. long-lived signatures)
 → Laura Jenty's talk for long-lived on Wednesday
 - More challenging signatures
 - More targeted searches

(e.g. RPV – no E_T^{miss})

(e.g. compressed SUSY)

This Talk.

A plot from last year

Taken from Keith Ulmer's talk at SUSY2017

A plot from last year

Taken from Keith Ulmer's talk at SUSY2017

- My naïve luminosity extrapolation to 70-80 fb⁻¹.
- Most analyses don't gain a lot by doubling the statistics.
- Need an updated strategy!

Run-2 strong SUSY searches @ 36 fb⁻¹

	ATLAS publications		CMS publications
1804.03568	RPV multijets	1801.01846	Soft opposite-sign dileptons
1803.10178	$\tilde{t} \rightarrow \tilde{\tau}$ pair production	1712.08920	RPV gluinos
1802.03158	Photon signatures in GMSB	1712.08501	$\tilde{g} \rightarrow \text{boosted } h \text{ pair production}$
1712.02332	$\text{Jets} + \text{E}_{\text{T}}^{\text{miss}}$	1711.08008	Photon signatures in GMSB
1712.02118	Disappearing tracks	1711.00752	\tilde{t} pair production (2 leptons)
1711.11520	\tilde{t} pair production (1 lepton)	1710.11188	\tilde{t}/\tilde{g} pair production (0 leptons)
		1710.09154	Multilepton search
1710.07171	RPV \tilde{t} (pair-produced jet resonances)	1709.09814	1 lepton + jets + $E_t^{miss}(\Delta \phi(W, \ell))$
1710.05544	RPV \tilde{t} (lepton-jet resonances)	1709.08908	Opposite sign dileptons
1710.04901	Displaced vertices	1709.00384	$\tilde{b}/\tilde{\chi} \to h(\gamma\gamma)$ with Razor
1709.04183	\tilde{t} pair production (0 leptons)	1707.07274	\tilde{b} pair production
1708.09266	\tilde{b} pair production	1707.06193	1 photon signatures in GMSB
1708.08232	1 lepton + jets + E_T^{miss}	1707.03316	\tilde{t} pair production (0 leptons)
1708.03247	\tilde{t} pair production (2 leptons)	1706.04402	\tilde{t} pair production (1 leptons)
1708.02794	Large jet multiplicities (large-R jets)	1705.04673	1 lepton + jets + $E_t^{miss}(M_J)$
1706.03986	$\tilde{t} \rightarrow h/Z$ pair production	1705.04650	Jets + E_T^{miss} (M _{T2})
1706.03731	Same sign di-/multi-leptons	1704.07781	Jets + H_T^{miss}
1704.08493	RPV signatures (1 lepton + jets)	1704.07323	Same sign dileptons

Run-2 strong SUSY searches @ 36 fb⁻¹

	ATLAS publications	CMS publications
1804.03568	RPV multijets	1801.01846 Soft
1803.10178	$\tilde{t} \rightarrow \tilde{\tau}$ pair production	1712.0800 I A A L A A L A A A A A A A A A A A A A
1802.03158	Photon signatures in GMSB	fhotil man 17
1712.02332	$Jets + E_T^{miss}$	n^{01} m^{01} m^{01} m^{01} m^{01}
1712.02118	Die nrograi	1 during
1711 1155	sive Prop	ned ut
Impl	ress perton	Lat SUSY 20-
IIIP	CMS, PUL	a data.
and	d hee	n present Run-2 conceptons
and	sults hau be	With IIII $\sigma/\tilde{\chi} \to h(\gamma\gamma)$ with Razer
	u these results updates	\tilde{b} pair provide the second secon
1	All cand will be	1707.06193
17	$a_{J \sim tS} + E_T^{miss}$	1707.033 Many of these shown in
170	t pair production (2 leptons)	1706.0440 be/have been here m
1708.02794	Large jet multiplicities (large-R jets)	1705.0467. parallel seson parcelona.
1706.03986	$\tilde{t} \rightarrow h/Z$ pair production	1705.04650 Bare
1706.03731	Same sign di-/multi-leptons	1704.07781
1704.08493	RPV signatures (1 lepton + jets)	1704.07323Same sign dileptons

Outline - new searches

My talk will be mostly about **dedicated** efforts for accessing new parameter spaces.

Generic searches:

- Multi-b search (updated search with 80 fb⁻¹)
- Inclusive hadronic SUSY
- Z/edge OS lepton search
- GMSB search with leptons and photons.
- More targeted searches:
 - Gluino production involving taus
 - Squark production involving charm
 - Compressed SUSY: Soft 1*l* top squark search
 - Bottom squark + Higgs search (incl. 2017 data)
- RPV searches:
 - 2, 3 or \geq 4 jet resonances

2017 update of multi-b search = 2017 data

- The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.
- The goal of this search is to target gluino production with decays involving 3rd generation quarks (b, t).

2017 update of multi-b search = 2017 data

- The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.
- The general strategy is to select multi-b events (≥ 3 or 4 b-jets), many jets (≥ 5 up to ≥ 9), high E_T^{miss} ($\geq 300 600$ GeV), high $m_{T,min}^{b jets}$, and high M_{eff} (e.g. binning in it).
 - Selecting 0 or 1 lepton events: if 1 lepton also high m_T^{ℓ} .
 - Signal and (most) control region definitions unchanged.

ATLAS-CONF-2018-041

2017 update of multi-b search

- The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.
- In the multibin search, there was a small excess \rightarrow not confirmed.

- The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.
- In the multibin search, there was a small excess \rightarrow not confirmed.

ATLAS-CONF-2018-041

Inclusive hadronic SUSY search

- One inclusive hadronic CMS search uses a running α_T and min $\Delta \phi^*$ cuts to reject QCD multijet production.
- The remaining phase space is divided into 254 signal regions depending on
 - Jet and b-jet multiplicities, H_T , and H_T^{miss} .

Inclusive hadronic SUSY search

- Besides generic interpretation, this includes split SUSY interpretation:
 - Fermions light, others heavy (give up on naturalness) $\rightarrow \tilde{g}$ can be long-lived
- Also ATLAS has done a re-interpretation for split SUSY.

Edge SFOS lepton search

- Look for a edge in the dilepton mass spectrum for two same-flavor oppositely-charged leptons.
- The latest ATLAS search includes a soft dilepton region ($p_T > 7 \text{ GeV}$).

Edge SFOS lepton search

- Look for a edge in the dilepton mass spectrum for two same-flavor oppositely-charged leptons.
- The latest ATLAS search includes a soft dilepton region ($p_T > 7 \text{ GeV}$).

GMSB search with 1γ and 1ℓ

- Most GMSB searches look for multilepton $(\tilde{\chi}_1^0 \to Z/h\tilde{G})$ or photons $(\tilde{\chi}_1^0 \to \gamma \tilde{G})$ signatures.
- If NLSP has significant Wino content, also have decays like $\tilde{\chi}_1^{\pm} \to W\tilde{G}$.
- CMS search for GMSB strong production in events with one lepton, one photon, several jets, and E_T^{miss} .

GMSB search with 1γ and 1ℓ

24 July 2018

Summary of generic RPC searches

- In simplified model approach (depending on decay mode and/or mass splittings):
 - $M_{\tilde{g}} \leq \mathcal{O}(1 \text{ TeV}) \mathcal{O}(2 \text{ TeV}) @ 95\% \text{ CL}$
 - $M_{\tilde{q}} \leq \mathcal{O}(0.5 \text{ TeV}) \mathcal{O}(1.5 \text{ TeV})@95\% \text{ CL}$
 - $M_{\tilde{t}} \leq \mathcal{O}(0.7 \text{ TeV}) \mathcal{O}(1.1 \text{ TeV})@95\% \text{ CL}$

Can be even worse in some corners of simplified model space.

Outline - new searches

My talk will be mostly about **dedicated** efforts for accessing new parameter spaces.

Generic searches:

- Multi-b search (updated search with 80 fb⁻¹)
- Inclusive hadronic SUSY
- Z/edge OS lepton search
- GMSB search with leptons and photons.
- More targeted searches:
 - Bottom squark + Higgs search (incl. 2017 data)
 - Gluino production involving taus
 - Squark production involving charm
 - Compressed SUSY: Soft 1ℓ top squark search
- RPV searches:
 - 2, 3 or \geq 4 jet resonances

Search for h decay in \tilde{b} production

- Most current squark searches look for the simplest decays $\tilde{q} \to q \tilde{\chi}_1^0$.
- What if the decay chain is longer?
 - Reconstructing the Higgs bosons in the decay

Search for h decay in \tilde{b} production

- A new ATLAS search looks for the longer decay chain $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$
- General: \geq 6 jets, \geq 4 (3) b-jets, no leptons and $E_T^{miss} > 250 \text{ GeV}$.
 - Signal extraction in M_{eff}
- Different selections if in compressed regime $\Delta M(\tilde{b}, \tilde{\chi}_2^0)$ or $\Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$
- Also use Higgs mass tagging using two b-jets with smallest ΔR .

21

2017 data

Search for h decay in \tilde{b} production

• A new ATLAS search looks for the longer decay chain $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$.

2017 data

Taus in strong SUSY

- In many scenarios, $\tilde{\tau}$ s are among the lightest electroweak sparticles.
 - e.g. in many GMSB models, the $\tilde{\tau}$ is the next-to-LSP.
- However, most inclusive strong production searches, final states with τ leptons are rejected to remove tt
 W+jets backgrounds.
- Dedicated searches are needed also in the strong sector.
- ATLAS performed a search for both *g̃ g̃* and *q̃ q̃* pair production.

24 July 2018

Taus in strong SUSY

- In ATLAS, hadronic τ leptons are identified with 2 BDTs (for 1- or 3-prong) using 12 input variables, such track and track+EM mass.
- The new ATLAS search selects events with 1 or $\geq 2 \tau_{had}$ leptons, ≥ 2 jets, and $E_T^{miss} > 400 (180)$ GeV for 1 (≥ 2) τ_{had} .
- Signal is selected having by high H_T and $\sum m_T^{\tau_i}$.

24

SUSY-2016-30

Taus in strong SUSY

- The ATLAS search selects events with 1 or $\geq 2 \tau_{had}$ leptons, ≥ 2 jets, and $E_T^{miss} > 400$ (180) GeV for 1 (≥ 2) τ_{had} .
- Signal is selected having by high H_T and $\sum m_T^{\tau_i}$.

Not only taus are challenging: charm

- Even more challenging than taus are the identification of charm quarks.
 - Charm quarks could play an important role in SUSY, e.g. in very compressed \tilde{t} scenarios.
- ATLAS deploys two BDTs with the same input variables as for b-tagging, but special training to separate charm jets from both bottom or light jets.

SUSY using charm tagging

- The ATLAS search targets both direct \tilde{c} pair production as well $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ decays.
- General selection requires ≥ 2 jets, \geq c-tagged jets, $E_T^{miss} > 500$ GeV.
 - For compressed region, require ≥ 3 jets with leading jet not c-tagged (ISR tagging).

SUSY using charm tagging

- The ATLAS search targets both direct \tilde{c} pair production as well $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ decays.
- Similar CMS search also performed for $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ decays.

Compressed \tilde{t} might decay differently

• In the very compressed regime, also the 4-body decay of the \tilde{t} might happen.

24 July 2018

• A CMS search looks in the single-lepton final state with very a soft lepton:

29

- $p_T > 5$ (3.5) GeV for e (μ)
- A BDT is trained to discriminate the \tilde{t} pair production signal from SM background.
 - Using 12 input variables such as E_T^{miss} or $p_T(\ell)$.
 - Multiple trainings performed depending on $\Delta M(\tilde{t}, \tilde{\chi}_1^0)$.

Compressed \tilde{t} might decay differently

Outline - new searches

My talk will be mostly about **dedicated** efforts for accessing new parameter spaces.

Generic searches:

- Multi-b search (updated search with 80 fb⁻¹)
- Inclusive hadronic SUSY
- Z/edge OS lepton search
- GMSB search with leptons and photons.
- More targeted searches:
 - Bottom squark + Higgs search (incl. 2017 data)
 - Gluino production involving taus
 - Squark production involving charm
 - Compressed SUSY: Soft 1*l* top squark search
- RPV searches:
 - 2, 3 or \geq 4 jet resonances

R-Parity violating SUSY

- With general R-parity violation couplings, one could have
 - rapid proton decay, or other other low energy constraints (e.g. neutrinoless β decay, flavor-changing current)
 - \rightarrow R-parity violating couplings are strongly constrained by low energy measurements.
- These constraints can be avoided if only one kind of R-parity violating coupling is allowed to be non-zero.
- Both ATLAS and CMS have a search program for RPV SUSY.
 - Several new results from CMS since SUSY2017.

Hadronic RPV resonance searches

- CMS search for $\tilde{q}\bar{\tilde{q}} \rightarrow 2 \times 4q$ or $\tilde{g}\tilde{g} \rightarrow 2 \times 5q$ pair production for masses ≤ 1 (1.5) TeV for \tilde{q} (\tilde{g}).
 - Allowed through $\lambda'' \neq 0$.

- 4 jet resonance for low mass squarks/gluinos:
 - Select two high p_T (>400 GeV) fat jets (CA, R = 1.2) with substructure ($\tau_{43} < 0.8$, $\tau_{42} < 0.45$) and reconstruct average mass.
- Fit signal, QCD, and tt PDFs to extract squark (or gluino) pair production from average fat jet mass spectrum.

Hadronic RPV resonance searches

- CMS search for $\tilde{g}\tilde{g} \rightarrow 2 \times 3q$ pair production
 - Use Dalitz plot variables of normalized dijet masses within each jet triplet to discriminate signal and background.
- At low masses, scouting data is used!
 - $H_T > 410 \text{ GeV triggered} @ 2 \text{ kHz} \ \Box$
 - Only feasible by storing reduced event content.

Hadronic RPV resonance searches

• CMS also release a paired dijet search: see backup or Wednesday's parallel session

RPV in ATLAS

Parallel talks

- For more details and also more analyses, please see also these parallel talks.
- Most of them were presented yesterday, Monday –photon searches will be presented on Tuesday, RPV searches on Wednesday.

Louis-Guillame Gagnon (1 st /2 nd gen @ ATLAS)	Myriam Schönenberger (1 st /2 nd gen 0 ℓ @ CMS)								
Mateusz Zarucki / Isabell Melzer-Pellmann (1 st /2 nd gen $\geq 1\ell$ @ CMS)	Christian Lüdtke (3 rd gen SUSY @ ATLAS)								
Pedram Bargasse (3 rd gen @ CMS)	Joe Pastika (boosted objects @ CMS)								
Johannes Schulz (photon searches @ CMS)									
Michael Edward Nelson (less conventional/RPV @ ATLAS)	Alejandro Gomez (less conventional/RPV @ CMS)								

•

- The experiments are developing more dedicated strategies to unveil potentially uncovered parameter spaces.
 - More dedicated: tau tagging for strong SUSY involving light $\tilde{\tau}$.
 - More challenging: charm tagging for compressed top squarks
 - More challenging: Multijet resonances in RPV
 - More targeted: soft leptons to look into compressed SUSY
- Both the ATLAS and CMS collaborations will continue the extensive search for "traditional natural" SUSY searches in the strong sectors.
 - New results with the full Run-2 dataset (2016–2018) will come next years.
- Therefore, we are not yet done with the strong SUSY search program for the LHC.

Outlook

- Many searches still need to be performed or need further optimization to fill in gaps.
 - E.g. in top squark searches

- Access high $M_{\tilde{t}}$ search
- Access high $M_{\widetilde{\chi}_1^0}$ search
- $\Delta M(\tilde{t}, \tilde{\chi}_1^0) \sim M_t$
- $\Delta M(\tilde{t}, \tilde{\chi}_1^0) \sim M_W$
- $\Delta M(\tilde{t},\tilde{\chi}_1^0) \sim 0$
- Access \tilde{t} degenerate with the top quark

Backup

Summary of strong SUSY: gluinos

Summary of strong SUSY: gluinos

Summary of strong SUSY: squarks $pp \rightarrow \tilde{q}\tilde{\tilde{q}}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ July 2018

Summary of strong SUSY: squarks

• The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.

					Gtt 1-	lepton					
		Criter	ia com	mon to all	regions	$\geq 1 \text{ sig}$	nal lepto	n, N _{b-jets}	≥ 3		
	Targetee	l kinema	atics	Туре Л	l _{jet} m	$n_{\rm T} m_1^l$	p-jets L,min E	T m	n ^{incl}	M_J^{Σ}	
	Region B (Boosted, Large Δm)		$\Delta m)$	SR ≥ CR =	: 5 > 1 : 5 < 1	150 > 150	120 > - >	500 > 300 >	2200 × 1700 ×	> 200 > 150	
	Region M (Moderate Δm)		n)	SR ≥ CR =	6 > 1 6 < 1	150 > 150	160 > - >	450 > 400 >	1800 × 1500 ×	> 200 > 100	
	Re (Compr	gion C essed, si Δm)	mall	SR ≥ CR =	:7 > 1 :7 < 1	150 > 150	160 > - >	350 > 350 >	1000 1000	-	
Gtt 0-lepton											
Targeted kir	nematics	Туре	Nleptor	n N _{b-jets}	Njet	$\Delta \phi_{ m min}^{ m 4j}$	m_{T}	m ^{b-jets} _{T,min}	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{ m eff}^{ m incl}$	M_J^{Σ}
Region (Boosted, La	n B arge Δm)	SR CR	= 0 = 1	≥ 3 ≥ 3	≥ 7 ≥ 6	> 0.4	- < 150	> 60 _	> 350 > 275	> 2600 > 1800	> 300 > 300
Region (Moderat	n M e Δm)	SR CR	= 0 = 1	≥ 3 > 3	≥ 7 > 6	> 0.4	- < 150	> 120	> 500 > 400	> 1800 > 1700	> 200
Region (Compre moderate	n C essed, Δm)	SR CR	= 0 = 1	≥ 4 ≥ 4	≥ 8 ≥ 7	> 0.4	- < 150	> 120	> 250 > 250	> 1000 > 1000	> 100 > 100
				Criteria	commor	Gbb to all re	gions: N	j _{et} ≥ 4			
Targeted kin	ematics	Туре	Nleptor	Nb-jets	$\Delta \phi_{ m min}^{ m 4j}$	n <i>m</i> T	m ^{b-j} _{T,n}	ets E ^{mis}	^{is} m _e	ff	Others
Region	n B	SR	= 0	≥ 3	> 0.4	4 –	-	> 40	0 > 28	300	-
(Boosted, La	$\operatorname{trge} \Delta m$	CR	= 1	≥ 3	-	< 15	0 –	> 40	0 > 25	500	-
Region	M	SR	= 0	≥ 4	> 0.4	4 –	> 9	0 > 45	0 > 16	500	-
(Woderate	с <u>а</u> т)	CR	= 1	≥ 4	-	< 15	0 –	> 30	0 > 16	500	-
(Compresse	d, small	SR CR	= 0 = 1	≥ 4 ≥ 4	> 0.4	4 – < 15	> 1:	55 > 45 > 37	0 – 5 –		-
Region	VC	SR	= 0	≥ 3	> 0.4	4 -	> 10	00 > 60	0 -	n ^j	> 400, $j_1 \neq b$.
very comp very smal	$1 \Delta m$	CR	= 1	≥ 3	-	< 15	0 –	> 60	0 –	<i>r</i> 1	$\Delta \phi^{j_1} > 2.5$

		SR-0	Gtt-1L			
Targeted kinematics	s B	М		С		
Observed events	0	0		5		
Fitted background	$0.64 \pm 0.$	34 1.1 ±	0.4	5.1 ± 2.2		
tī	$0.32 \pm 0.$	23 0.52 ±	0.30	2.6 ± 1.7		
Single-top	$0.17 \pm 0.$	22 0.29 ±	0.19	1.0 ± 1.0		
$t\overline{t} + X$	0.15 ± 0.15	09 0.27 ±	0.15	1.4 ± 0.7		
Z+jets	< 0.01	< 0.0	01 0	$.0018 \pm 0.0015$		
W+jets	< 0.01	$0.009 \pm$	0.031	0.007 ± 0.008		
Diboson	< 0.01	< 0.0	01	< 0.01		
MC-only backgroun	nd 0.8	1.1		5.3		
		SR-0	Gtt-0L			
Targeted kinemati	cs B	Ν	1	С		
Observed events	5	9)	50		
Fitted background	3.0 ± 1	.1 6.6 ±	2.6	54 ± 17		
tī	1.5 ± ().7 3.2 ±	1.8	42 ± 16		
Single-top	0.7 ± 0).6 1.4 ±	0.7	3.2 ± 3.4		
$t\overline{t} + X$	0.35 ± 0).19 0.9 ±	0.4	5.7 ± 3.1		
Z+jets	0.2 ± 0	0.5 0.6 ±	1.7	1.1 ± 2.9		
W+jets	0.19 ± 0	0.17 0.4 ±	0.4	1.0 ± 1.0		
Diboson	< 0.0	1 0.06 ±	0.04	0.19 ± 0.13		
Multijet	0.04 ± 0	0.04 0.029 ±	0.029	0.030 ± 0.030		
MC-only backgrou	und 3.3	7.	2	52		
		SR	-Gbb			
argeted kinematics	В	М	C	VC		
Observed events	4	5	7	8		
itted background	4.9 ± 1.5	6.3 ± 2.6	9.7 ±	3.5 7 ± 4		
ī	2.8 ± 0.9	3.7 ± 2.1	4.8 ±	1.4 3.6 ± 2.2		
ingle-top	1.1 ± 0.7	0.7 ± 0.4	1.5 ±	$1.6 0.30 \pm 0.2$		
$\overline{t} + X$	0.29 ± 0.17	0.9 ± 0.5	1.5 ±	0.8 0.67 ± 0.3		
Z+jets	0.3 ± 0.8	0.5 ± 1.3	$1.0 \pm$	2.6 1 ± 4		
V+jets	0.4 ± 0.4	0.20 ± 0.23	$0.6 \pm$	0.5 0.6 ± 0.5		
Diboson	0.03 ± 0.14	0.19 ± 0.24	$0.25 \pm$	0.19 0.16 ± 0.1		
Aultijet	0.08 ± 0.08	< 0.01	< 0.0	01 < 0.01		

MC-only background

4.5

7.0

9.0

7

ATLAS-CONF-2018-041

• The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.

ATLAS-CONF-2018-041

• The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.

ATLAS-CONF-2018-041

	High-N _{jet} regions									
	Criteria common to all regions: $N_{b-\text{jets}} \ge 3$									
Targeted kinematics	Туре	Nlepton	$\Delta \phi_{ m min}^{ m 4j}$	m_{T}	Njet	$m_{\mathrm{T,min}}^{b ext{-jets}}$	M_J^Σ	$E_{\mathrm{T}}^{\mathrm{miss}}$	m _{eff}	
High-mett	SR-0L	= 0	> 0.4	-	≥ 7	> 100	> 200	> 400	> 2500	
(HH) (Large Δm)	SR-1L	≥ 1	-	> 150	≥ 6	> 120	> 200	> 500	> 2300	
	CR	≥ 1	-	< 150	≥ 6	> 60	> 150	> 300	> 2100	
Intermediate-most	SR-0L	= 0	> 0.4	-	≥ 9	> 140	> 150	> 300	[1800, 2500]	
(HI)	SR-1L	≥ 1	-	> 150	≥ 8	> 140	> 150	> 300	[1800, 2300]	
(Intermediate Δm)	CR	≥ 1	-	< 150	≥ 8	> 60	> 150	> 200	[1700, 2100]	
Low-m _{eff}	SR-0L	= 0	> 0.4	-	≥ 9	> 140	-	> 300	[900, 1800]	
(HL)	SR-1L	≥ 1	-	> 150	≥ 8	> 140	-	> 300	[900, 1800]	
(Small Δm)	CR	≥ 1	-	< 150	≥ 8	> 130	-	> 250	[900, 1700]	

Intermediate-N_{jet} regions

	Criteria common to all regions: $N_{b-jets} \ge 3$										
Targeted kinematics	Туре	N _{lepton}	$\Delta \phi_{ m min}^{ m 4j}$	m_{T}	Njet	$j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$	$m_{\mathrm{T,min}}^{b\text{-jets}}$	M_J^Σ	$E_{\mathrm{T}}^{\mathrm{miss}}$	m _{eff}	
Intermediate- $m_{\rm eff}$ (II) (Intermediate Δm)	SR-0L	= 0	> 0.4	-	[7, 8]	1	> 140	> 150	> 300	[1600, 2	
	SR-1L	≥ 1	-	> 150	[6, 7]	-	> 140	> 150	> 300	[1600, 2	
	CR	≥ 1	-	< 150	[6,7]	1	> 100	> 150	> 300	[1600, 2	
Low-m _{eff}	SR-0L	= 0	> 0.4	-	[7, 8]	1	> 140	-	> 300	[800, 16	
(IL) (Low Δm)	SR-1L	≥ 1	-	> 150	[6, 7]	-	> 140	-	> 300	[800, 16	
	CR	≥ 1	-	< 150	[6, 7]	1	> 130	-	> 300	[800, 16	

	Low- N_{jet} regions Criteria common to all regions: $N_{b-jets} \ge 3$									
Targeted kinematics	Туре	Nlepton	$\Delta \phi_{ m min}^{ m 4j}$	m_{T}	Njet	$j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$	$p_{\mathrm{T}}^{\mathrm{j}_4}$	$m_{\mathrm{T,min}}^{b\text{-jets}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{\rm eff}$
High- $m_{\rm eff}$	SR	= 0	> 0.4	-	[4,6]	-	> 90	-	> 300	> 2400
(Large Δm)	CR	≥ 1	-	< 150	[4,5]	-	-	-	> 200	> 2100
Intermediate- $m_{\rm eff}$	SR	= 0	> 0.4	-	[4,6]	1	> 90	> 140	> 350	[1400, 240
(Intermediate Δm)	CR	≥ 1	-	< 150	[4,5]	1	> 70	-	> 300	[1400, 200
Low-m _{eff}	SR	= 0	> 0.4	-	[4,6]	1	> 90	> 140	> 350	[800, 1400
(LL) $(Low \Delta m)$	CR	≥ 1	-	< 150	[4,5]	1	> 70	-	> 300	[800, 1400

	ISR regions									
	Criteria common to all regions: $N_{b\text{-jets}} \ge 3$, $\Delta \phi^{j_1} > 2.9$, $p_{T_1}^{\ j} > 400$ GeV and $j_1 \ne b$									
Туре	N _{lepton}	$\Delta \phi_{ m min}^{ m 4j}$	m _T	N _{jet}	$m_{\mathrm{T,min}}^{b\text{-jets}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{\rm eff}$			
SR	= 0	> 0.4	-	[4, 8]	> 100	> 600	< 2200			
CR	≥ 1	-	< 150	[4, 7]	-	> 400	< 2000			

• The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.

ATLAS-CONF-2018-041

• The ATLAS multi-b search (prev: JHEP06(2018)107) updated its results with 2017 data.

ATLAS-CONF-2018-041

Inclusive hadronic SUSYsearch

• One inclusive hadronic CMS search uses a running α_T and min $\Delta \phi^*$ cuts to reject QCD multijet production.

Physics object acceptance	s							
Jet	$p_{\rm T} > 40 { m GeV}, \eta < 2.4$							
Photon	$p_{\rm T} > 25 { m GeV}, \eta < 2.5, { m isolar}$	ted in cone $\Delta R < 0.3$						
Electron	$p_{\rm T} > 10 { m GeV}, \eta < 2.5, I^{ m rel} <$	< 0.1 in cone $0.05 < \Delta R(p_{\rm T}) < 0.2$						
Muon	$p_{\rm T} > 10 { m GeV}, \eta < 2.5, I^{ m rel} <$	< 0.2 in cone $0.05 < \Delta R(p_{\rm T}) < 0.2$						
Single isolated track (SIT)	$p_{\rm T} > 10 { m GeV}, \eta < 2.5, I^{ m track}$	< 0.1 in cone $\Delta R < 0.3$						
Baseline event selection								
All-jet final state	Veto events containing photo	ons, electrons, muons, and SITs within acceptance						
$p_{\rm T}^{\rm miss}$ quality	Veto events based on filters	eto events based on filters related to beam and instrumental effects						
Jet quality	Veto events containing jets the	Veto events containing jets that fail identification criteria or $0.1 < f_{b^{\pm}}^{j_1} < 0.95$						
Jet energy and sums	$p_{\rm T}^{\rm j_1} > 100{ m GeV},H_{\rm T} > 200{ m GeV}$	$J_{\rm T}^{\rm j_1} > 100 { m GeV}, H_{\rm T} > 200 { m GeV}, H_{\rm T}^{\rm miss} > 200 { m GeV}$						
Jets outside acceptance	$H_{\rm T}^{\rm miss}/p_{\rm T}^{\rm miss} < 1.25$, veto eve	$p_{ m T}^{ m miss}/p_{ m T}^{ m miss} < 1.25$, veto events containing jets with $p_{ m T} > 40{ m GeV}$ and $ \eta > 2.4$						
Signal region	Baseline selection +							
$\alpha_{\rm T}$ threshold ($H_{\rm T}$ range)	0.65 (200–250 GeV), 0.60 (250	-300), 0.55 (300-350), 0.53 (350-400), 0.52 (400-900)						
$\Delta \phi_{\min}^*$ threshold	$\Delta \phi^*_{ m min} > 0.5$ ($n_{ m jet} \ge 2$), $\Delta \phi^{*_{25}}_{ m min}$	$n > 0.5 (n_{\text{jet}} = 1)$						
Nominal categorization s	chema							
n _{jet}	1	(monojet)						
	$\geq 2a$	(a denotes asymmetric, $40 < p_{ m T}^{ m j_2} < 100{ m GeV}$)						
	2, 3, 4, 5, ≥6	(symmetric, $p_{\rm T}^{\rm j_2} > 100{\rm GeV}$)						
n _b	0, 1, 2, 3, ≥4	(can be dropped/merged vs. n_{jet})						
$H_{\rm T}$ boundaries	200, 400, 600, 900, 1200 GeV	(can be dropped/merged vs. n_{jet} , n_b)						
$H_{\rm T}^{\rm miss}$ boundaries	200, 400, 600, 900 GeV	(can be dropped/merged vs. n_{jet} , n_b , H_T)						
Simplified categorization	schema							
Topology (n_{jet}, n_b)	Monojet-like $(1 \cap \geq 2a, 0)$, ($(1 \cap \geq 2a, \geq 1)$						
	Low n_{jet} (2 \cap 3, 0 \cap 1),	$(2 \cap 3, \geq 2)$						
	Medium n_{jet} (4 \cap 5, 0 \cap 1),	$(4 \cap 5, \geq 2)$						
	High n_{jet} ($\geq 6, 0 \cap 1$), (\geq	≥6,≥2)						
$H_{\rm T}$ boundaries	$H_{\rm T}$ > 200 GeV ($n_{\rm jet} \leq$ 3), $H_{\rm T}$	$> 400 { m GeV} (n_{ m jet} \ge 4)$						
$H_{\rm T}^{\rm miss}$ boundaries	200, 400, 600, 900 GeV							
Control regions	Baseline selection +							
μ +jets (inverted μ veto)	$p_{\rm T}^{\mu_1} > 30 { m GeV}, \eta^{\mu_1} < 2.1, \Delta h$	$R(\mu, j_i) > 0.5, 30 < m_T(\vec{p}_T^{\mu}, \vec{p}_T^{miss}) < 125 \text{GeV}$						
$\mu\mu$ +jets (inverted μ veto)	$p_{\mathrm{T}}^{\mu_{1,2}} > 30\mathrm{GeV}, \eta^{\mu_{1,2}} < 2.1, \Delta R(\mu_{1,2}, \mathrm{j_i}) > 0.5, m_{\mu\mu} - m_Z < 25\mathrm{GeV}$							
Multijet-enriched	Sidebands to signal region: $H_{\pi}^{\text{miss}}/\eta_{\pi}^{\text{miss}} > 1.25$ and /or $\Lambda \phi_{\pi\pi}^* < 0.5$							

JHEP 05 (2018) 025

Inclusive hadronic SUSYsearch

JHEP 05 (2018) 025

• One inclusive hadronic CMS search uses a running α_T and min $\Delta \phi^*$ cuts to reject QCD multijet production.

52

JHEP 05 (2018) 025

Inclusive hadronic SUSYsearch

• One inclusive hadronic CMS search uses a running α_T and min $\Delta \phi^*$ cuts to reject QCD multijet production.

	High- p_T regions		E_{T}^{mn}	eV]	H_{T} [GeV]	n_{jets}	$m_{\ell\ell}$ [GeV]	m_{T2} [GeV]	SF/DF	n_{b-jets}	$\Delta \phi(\mathbf{jet}_{12}$	$_2, oldsymbol{p}_{\mathrm{T}}^{\mathrm{mass}})$	$m_{\ell\ell}$ windo	ows
	Signal reg	ions												
	SR-low		>	250	> 200	≥ 2	> 12	> 70	SF	_	> (0.4	10	
	SR-mediu	m	>	400	> 400	≥ 2	> 12	> 25	SF	-	>	0.4	9	
	SR-high		>	200	> 1200	≥ 2	> 12	-	SF	-	>	0.4	10	
	Control re	egions												
	CR-FS-lov	W	>	250	> 200	≥ 2	> 12	> 70	DF	_	> (0.4	_	
	CR-FS-m	edium	>	400	> 400	≥ 2	> 12	> 25	\mathbf{DF}	-	> (0.4	_	
	CR-FS-hig	gh	>	100	> 1100	≥ 2	> 12	-	\mathbf{DF}	-	> (0.4	_	
	$CR\gamma$ -low			-	> 200	≥ 2	-	-	0ℓ , 1γ	-	-	_	-	
	$CR\gamma$ -med	ium		-	> 400	≥ 2	-	-	0ℓ , 1γ	-	-	-	-	
	$CR\gamma$ -high			-	> 1200	≥ 2	-	-	0ℓ , 1γ	-	-	-	_	
	CRZ-low		<	100	> 200	≥ 2	> 12	> 70	SF	-	-	-	_	
	CRZ-med	ium	<	100	> 400	≥ 2	> 12	> 25	SF	_	-	-	-	
	CRZ-high		<	100	> 1200	≥ 2	> 12	-	\mathbf{SF}	-	-	-	-	
	Validation	n regions	;											
	VR-low		100-2	200	> 200	≥ 2	> 12	> 70	SF	-	> (0.4	-	
	VR-mediu	ım	100-2	200	> 400	≥ 2	> 12	> 25	SF	-	> (0.4	-	
	VR-high		100-2	200	> 1200	≥ 2	> 12	-	SF	-	> (0.4	_	
	VR- $\Delta \phi$ -lo	W	>	250	> 200	≥ 2	> 12	> 70	SF	-	< (0.4	_	
	$VR-\Delta\phi-m$	iedium	>	400	> 400	≥ 2	> 12	> 25	SF	_	< (0.4	-	
	VR- $\Delta \phi$ -hi	igh	>	200	> 1200	≥ 2	> 12	_	\mathbf{SF}	_	< (0.4	-	
	VR-WZ	0	100-2	200	> 200	≥ 2	> 12	_	3ℓ	0	> (0.4	_	
	VR-ZZ		<	50	> 100	≥ 1	> 12	_	4ℓ	0	> (0.4	_	
Low- p_T regions	E_{T}^{miss} [GeV]	$p_{\mathbf{T}}^{\ell\ell}$ [GeV]	n_{jets}	<i>п</i> ь-је	ts	m_ℓ [Ge	\mathbf{v}^{ℓ}	SF/DI	F OS/SS	$\Delta \phi(\mathbf{jet})$	$_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	m_{T} [GeV]	$m_{\ell\ell}$ wind	lows
Signal regions														
SRC	> 250	< 20	≥ 2	-		> 3	30	SF	OS	>	0.4	-	6	
SRC-MET	> 500	< 75	≥ 2	-		$>4, \notin [8$	8.4, 11]	SF	OS	>	0.4	-	6	
Control regions														
CRC	> 250	< 20	≥ 2	-		> 3	30	DF	OS	>	0.4	-	-	
CRC-MET	> 500	< 75	≥ 2	-		$>4, \notin [8]$	[8.4, 11]	DF	OS	>	0.4	-	-	
CR-real	-	-	≥ 2	-		81-1	01	$2\ell SF$	OS		-	-	-	
$\operatorname{CR-fake} \left\{ \right.$	< 125	-	-	-	> 4,	$> 4, \notin [8]$ $\notin [8.4, 11]$	8.4, 11] ,∉ [81, 101	2ℓ μe] 2ℓ μμ	\mathbf{SS}		-	-	-	
Validation regio	ons													
VRA	200 - 250	< 20	> 2	_		> 3	30	SF	OS	>	0.4	_	_	
VRA2	200 - 250	> 20	≥ 2	-		$> 4, \notin [8]$	[8.4, 11]	SF	OS	>	0.4	-	-	
VRB	250 - 500	20 - 75	≥ 2	-		$>4, \notin [8$	[8.4, 11]	SF	OS	>	0.4	-	-	
VRC	250 - 500	> 75	≥ 2	-		$>4, \notin [8$	[8.4, 11]	SF	OS	>	0.4	-	-	
VR-WZ-low- $p_{\rm T}$	> 200	-	≥ 1	0		$>4, \notin [8$	8.4, 11]	3ℓ	-	>	0.4	-	-	
VR-ZZ-low- $p_{\rm T}$	> 200	-	-	0		$>4, \notin [8$	[3.4, 11]	4ℓ	-	>	0.4	-	-	
$VR-\Delta\phi$	> 250	-	≥ 2	-		$>4, \notin [8]$	8.4, 11]	SF	OS	<	0.4		_	
VR-fakes	> 225	-	≥ 2	-		> 4, ∉ [8	8.4, 11]	DF	OS	>	0.4	$\ell_1, \ell_2 < 100$	-	
VR-SS	> 225	-	≥ 2	-		$> 4, \notin [8]$	5.4, 11	SF	SS	>	0.4	$\ell_1, \ell_2 < 100$	-	

• Look for a edge in the dilepton mass spectrum for two same-flavor oppositely-charged leptons.

arXiv:1805.11381

• Look for a edge in the dilepton mass spectrum for two same-flavor oppositely-charged leptons.

arXiv:1805.11381

arXiv:1805.11381

Edge OS lepton search

arXiv:1805.11381

Edge OS lepton search

GMSB search with 1γ and 1ℓ CMS-SUS-17-012

• Search for GMSB strong production in events with one lepton, one photon, several jets, and E_T^{miss} .

GMSB search with 1γ and 1ℓ CMS-SUS-17-012

- Search for GMSB strong production in events with one lepton, one photon, several jets, and E_T^{miss} .

24 July 2018

Search for h decay in \tilde{b} production

• A new ATLAS search looks for the longer decay chain $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$

Variable	\mathbf{SRA}	SRA-L	SRA-L SRA-M				
$N_{\rm leptons}$ (baseline)		=	= 0				
$N_{ m jets}$		2	<u>≥</u> 6				
$N_{ m b-jets}$	≥ 4						
$E_{\rm T}^{\rm miss}$ [GeV]	> 250						
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$		>	0.4				
au veto		Ŋ	les				
$p_{\rm T}(b_1)~[{\rm GeV}]$		>	200				
$\Delta R_{\max}(b,b)$		i	2.5				
$\Delta R_{\max-\min}(b,b)$		i	2.5				
$m(h_{\rm cand}) \ [{\rm GeV}]$	> 80						
$m_{\rm eff} [{\rm TeV}]$	> 1.0	$\in [1.0, 1.2]$	$\in [1.2, 1.5]$	> 1.5			

Variable	SRB
$N_{\rm leptons}$ (baseline)	= 0
$N_{ m jets}$	≥ 5
$N_{ m b-jets}$	≥ 4
$E_{\rm T}^{\rm miss}$ [GeV]	> 300
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$	> 0.4
au veto	Yes
$m(h_{\text{cand1}}, h_{\text{cand2}})_{\text{avg}} \text{ [GeV]}$	$\in [50, 140]$
non-b leading jet	Yes
$p_{\rm T}(j_1) [{\rm GeV}]$	> 300
$ \Delta \phi(j_1, E_{\rm T}^{\rm miss}) $ [rad]	> 2.8
$m_{\rm eff} [{\rm TeV}]$	> 1

Variable	SRC25	SRC27	SRC30	SRC32				
$N_{\rm leptons}$ (baseline)	= 0							
$N_{ m jets}$	≥ 4							
$N_{ m b-jets}$	≥ 3							
$E_{\rm T}^{\rm miss} [{\rm GeV}]$		> 2	250					
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{T}^{\text{miss}}) \text{ [rad]}$	> 0.4							
S	> 25	> 27	> 30	> 32				

ATLAS-CONF-2018-040

Search for h decay in \tilde{b} production

• A new ATLAS search looks for the longer decay chain $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$

ATLAS-CONF-2018-040

2017 data

Search for h decay in \tilde{b} production

• A new ATLAS search looks for the longer decay chain $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$

p

p

Search for h decay in \tilde{b} production

• A new ATLAS search looks for the longer decay chain $\tilde{b} \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$

• In ATLAS, τ leptons are identified with 2 BDTs (for 1- or 3-prong) using 12 input variables, such as fraction of charged tracks momentum in the isolation cone.

• The new ATLAS search selects events with 1 or $\geq 2 \tau_{had}$ leptons, ≥ 2 jets, and $E_T^{miss} > 400 (180)$ GeV for 1 (≥ 2) τ_{had} . Signal is selected having by high H_T and $\sum m_T^{\tau_i}$.

• The new ATLAS search selects events with 1 or $\geq 2 \tau_{had}$ leptons, ≥ 2 jets, and $E_T^{miss} > 400 (180)$ GeV for 1 (≥ 2) τ_{had} . Signal is selected having by high H_T and $\sum m_T^{\tau_i}$.

• The new ATLAS search selects events with 1 or $\geq 2 \tau_{had}$ leptons, ≥ 2 jets, and $E_T^{miss} > 400 (180)$ GeV for 1 (≥ 2) τ_{had} . Signal is selected having by high H_T and $\sum m_T^{\tau_i}$.

• The new ATLAS search selects events with 1 or $\geq 2 \tau_{had}$ leptons, ≥ 2 jets, and $E_T^{miss} > 400 (180)$ GeV for 1 (≥ 2) τ_{had} . Signal is selected having by high H_T and $\sum m_T^{\tau_i}$.

SUSY-2016-30

SUSY using charm tagging

- The new ATLAS search targets both direct \tilde{c} pair production as well $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ decays.
- General selection requires ≥ 2 jets, \geq c-tagged jets, $E_T^{miss} > 500$ GeV.
 - For compressed region, require ≥ 3 jets with leading jet not c-tagged (ISR tagging).

	SR1	SR2	SR3	SR4	SR5
Trigger	$E_{\rm T}^{\rm miss}$ triggers				
Leptons	$0~e$ and $0~\mu$				
$E_{\rm T}^{\rm miss}~[{\rm GeV}]$	> 500				
$\Delta \phi_{\min}(\text{jet}, \boldsymbol{E}_{T}^{\text{miss}}) \text{ [rad]}$	> 0.4				
$N_{c- m jets}$	≥ 1				
$N_{ m jets}$	≥ 2	≥ 3	≥ 3	≥ 3	≥ 3
Leading jet c -tag veto	yes	yes	yes	yes	no
$p_{\mathrm{T}}^{j_{1}}$ [GeV]	> 250	> 250	> 250	> 250	> 300
$p_{\mathrm{T}}^{j_2}~[\mathrm{GeV}]$	—	_	> 100	> 140	> 200
$p_{\mathrm{T}}^{j_3}~[\mathrm{GeV}]$	_	_	> 80	> 120	> 150
$p_{\mathrm{T}}^{c_1} \; [\mathrm{GeV}]$	< 100	> 60	> 80	> 100	> 150
$m_{\mathrm{T}}^c \; [\mathrm{GeV}]$	$\in (120, 250)$	$\in (120, 250)$	$\in (175, 400)$	> 200	> 400

arXiv:1805.01649

SUSY using charm tagging

- The new ATLAS search targets both direct \tilde{c} pair production as well $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ decays.
- General selection requires ≥ 2 jets, \geq c-tagged jets, $E_T^{miss} > 500$ GeV.
 - For compressed region, require ≥ 3 jets with leading jet not c-tagged (ISR tagging).

arXiv:1805.01649
SUSY using charm tagging

arXiv:1805.01649

- The new ATLAS search targets both direct \tilde{c} pair production as well $\tilde{t} \rightarrow c \tilde{\chi}_0^1$ decays.
- General selection requires ≥ 2 jets, \geq c-tagged jets, $E_T^{miss} > 500$ GeV.
 - For compressed region, require ≥ 3 jets with leading jet not c-tagged (ISR tagging).

Yields	SR1	SR2	SR3	SR4	SR5
Observed	59	33	23	53	27
Total SM	61 ± 11	32 ± 5	31 ± 6	59 ± 11	31 ± 5
Z+jets	37.1 ± 7.8	16.7 ± 3.2	17 ± 5	34 ± 8	20 ± 4
W+jets	11.2 ± 5.1	6.5 ± 2.3	8.4 ± 2.0	15 ± 4	5.9 ± 1.5
Тор	5.4 ± 2.0	5.6 ± 2.6	2.0 ± 2.0	3.1 ± 1.8	1.7 ± 0.7
Diboson	6.3 ± 2.1	2.7 ± 1.7	2.4 ± 0.7	5.9 ± 2.3	3.2 ± 1.6
Other	0.6 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	1.0 ± 0.1	0.3 ± 0.1
Signal benchmarks					
$(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (450, 425) \text{ GeV}$	22.7 ± 4.0	9.1 ± 2.6	1.6 ± 1.0	1.84 ± 0.71	0.45 ± 0.27
$(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (500, 420) \text{ GeV}$	18.3 ± 3.4	19.7 ± 4.9	15.2 ± 4.1	8.0 ± 2.2	1.26 ± 0.64
$(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (500, 350) \text{ GeV}$	5.4 ± 2.0	11.6 ± 3.3	26.1 ± 6.7	18.7 ± 5.4	3.0 ± 1.1
$(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (600, 350) \text{ GeV}$	1.91 ± 0.87	3.2 ± 1.3	10.5 ± 3.0	24.0 ± 5.9	7.0 ± 2.2
$(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0}) = (900, 1) \text{ GeV}$	0.67 ± 0.19	0.61 ± 0.21	1.61 ± 0.50	11.7 ± 2.0	10.2 ± 1.8
$\langle \sigma_{\rm vis} \rangle_{obs}^{95}$ [fb]	0.67	0.46	0.33	0.59	0.40
S^{95}_{obs}	24.2	16.6	11.9	21.3	14.3
S_{exp}^{95}	$24.4^{+13.2}_{-7.6}$	$16.0^{+5.6}_{-4.4}$	$15.0^{+5.2}_{-3.1}$	$24.9^{+9.6}_{-7.1}$	$15.3^{+6.8}_{-2.2}$
p(s=0)	0.5	0.41	0.5	0.5	0.5

Compressed \tilde{t} might decay differently arXiv:1805.05784

- The new CMS search looks in the single-lepton final state with very a soft lepton.
- BDT input:
 - E_T^{miss} , $p_T(\ell)$, M_T
 - $\eta(\ell), Q(\ell)$
 - $p_T(ISR)$, $p_T(b)$, N_{jets} , H_T
 - N(b), $\Delta R(\ell, b)$, D(b)

Compressed \tilde{t} might decay differently arXiv:1805.05784

• The new CMS search looks in the single-lepton final state with very a soft lepton.

Compressed \tilde{t} might decay differently

arXiv:1805.05784 also contains a cut-and-count analysis that has combined its results with the 0*l* top squark search (JHEP 10 (2017) 005).
arXiv:1805.05784

arXiv:1806.01058

Hadronic RPV resonance searches

arXiv:1806.01058

Hadronic RPV resonance searches

arXiv:1806.01058

Hadronic RPV resonance searches

Parameter	Pre-fit value	Post-fit value	
QCD normalization [events]	floating	1222 ± 35	
QCD shift [GeV]	0 ± 17	-8 ± 4	
QCD stretch	$(0\pm18)\%$	$(-1 \pm 3)\%$	
t t normalization	1.00 ± 0.24	1.08 ± 0.14	
tŧ and signal shift [GeV]	0 ± 16	-10 ± 6	
tt and signal stretch	$(0\pm20)\%$	$(15\pm9)\%$	
Signal normalization	1.00 ± 0.24		

CMS-EXO-17-030

Hadronic RPV resonance searches

• CMS search for $\tilde{g}\tilde{g} \rightarrow 2 \times 3q$ pair production

CMS-EXO-17-030

Hadronic RPV resonance searches

• CMS search for $\tilde{g}\tilde{g} \rightarrow 2 \times 3q$ pair production

Region	Mass Range	$p_{\rm T} >$	$H_{\rm T} >$	6^{th} Jet $p_{\rm T} >$	MDS[(6,3)+(3,2)]<	$A_m <$	$\Delta >$	MDS[3,2]<
1	200-400 GeV	30 GeV	650 GeV	40 GeV	1.25	0.25	250 GeV	0.05
2	400-700 GeV	30 GeV	650 GeV	50 GeV	1.00	0.175	180 GeV	0.175
3	700-1200 GeV	50 GeV	900 GeV	125 GeV	0.9	0.15	20 GeV	0.2
4	1200-2000 GeV	50 GeV	900 GeV	175 GeV	0.75	0.15	-120 GeV	0.25

CMS-EXO-17-030

Hadronic RPV resonance searches

• CMS search for $\tilde{g}\tilde{g} \rightarrow 2 \times 3q$ pair production

Exclusion: $80 < m_{\tilde{t}} < 520 \text{ GeV}$

for $\lambda_{312}^{\prime\prime}$ coupling

Exclusion: $m_{\tilde{t}} \in (80,270)$, (285,340), or (400,525) GeV for λ''_{323} coupling