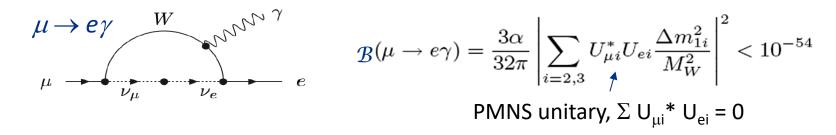

Charged Lepton Flavor Violation Experiments

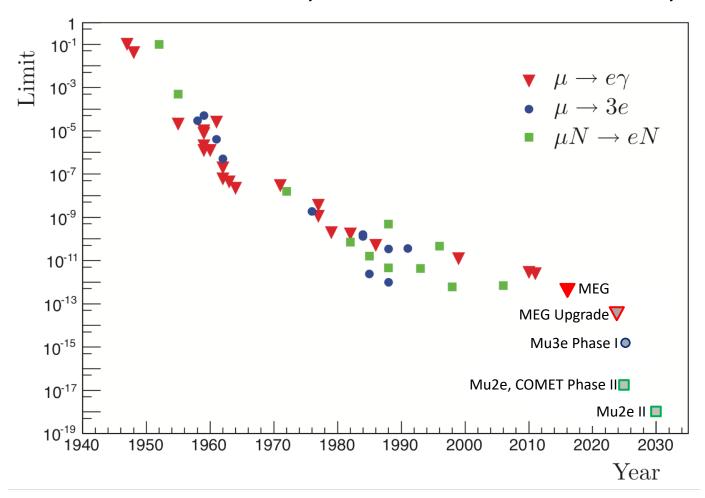
Ron Ray (Fermilab – Mu2e Project Manager) SUSY 2018

7/25/18

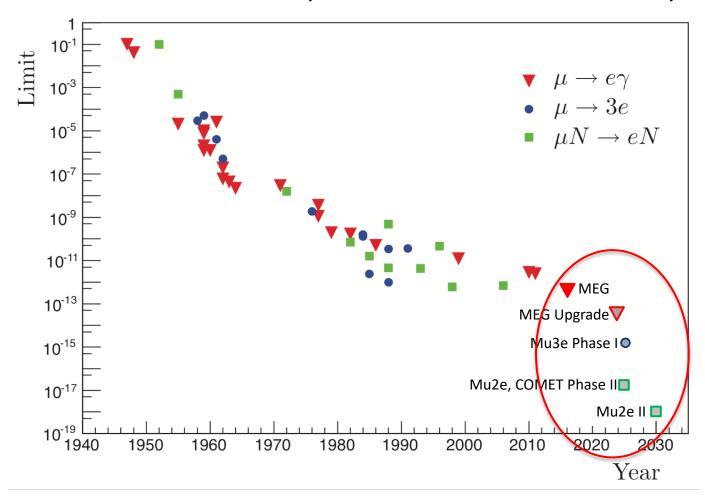

Charged Lepton Flavor Violation

- Quarks and neutrinos both mix.
 - Those discoveries revolutionized physics
- What about charged leptons?
 - No known Global Symmetry that requires flavor conservation
 - CLFV is a probe of new physics
 - Directly addresses physics of flavor and generations
 - Many extensions to the Standard Model predict large flavor violating effects that are in reach of next generation experiments
 - Current and next generation CLFV experiments are sensitive to physics well above the TeV scale (10³ – 10⁴ TeV)
- Rates of CLFV processes are model dependent and vary widely depending on the underlying physics.
 - CLFV processes are powerful discriminators.

CLFV and the vSM


- CLFV can be generated with massive neutrinos:
- These processes are extremely suppressed in the SM, due to GIM mechanism and tiny neutrino masses. For example:

- Effectively zero from an experimental perspective. No SM Pollution!
- Observation of CLFV would be unambiguous evidence of physics beyond the Standard Model


History of CLFV Searches using Muons

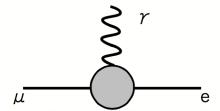
There have been many searches for CLFV in muon decays

History of CLFV Searches using Muons

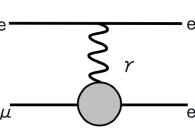
There have been many searches for CLFV in muon decays

CLFV Processes

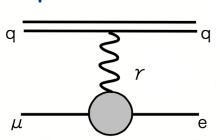
Process	Current Limit	Next Generation exp
$\tau \rightarrow \mu \eta$	BR < 6.5 E-8	
$\tau \rightarrow \mu \gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II, LHCb)
$\tau \rightarrow \mu\mu\mu$	BR < 3.2 E-8	
τ → eee	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	NA62
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
$B^0 \rightarrow e\mu$	BR < 7.8 E-8	LHCb, Belle II
B⁺ → K⁺eμ	BR < 9.1 E-8	
$\mu^+ \rightarrow e^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow e^+e^+e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
μ -N \rightarrow e-N	$R_{\mu e}$ < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

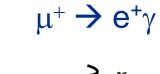

Expect significant progress in the near future

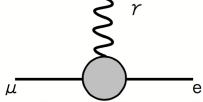
CLFV Processes

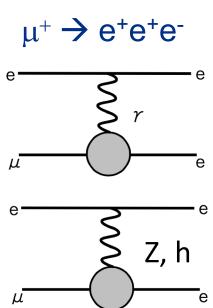

Process	Current Limit	Next Generation exp
τ → μη	BR < 6.5 E-8	
$\tau \rightarrow \mu \gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II, LHCb)
τ → μμμ	BR < 3.2 E-8	
τ → eee	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	NA62
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
$B^0 \rightarrow e\mu$	BR < 7.8 E-8	LHCb, Belle II
B+ → K+eµ	BR < 9.1 E-8	
$\mu^+ \rightarrow e^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow e^+e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
$\mu^-N \rightarrow e^-N$	$R_{\mu e}$ < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

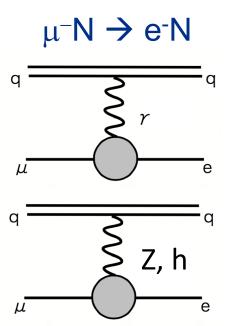
Muons provide the most sensitivity

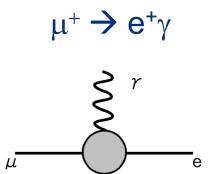


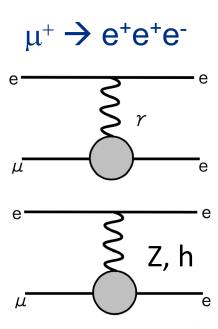


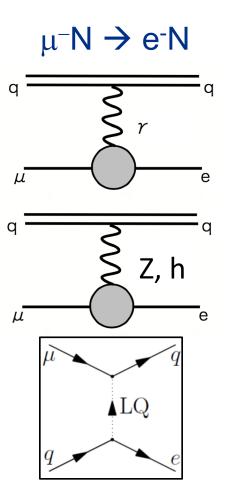

$$\mu^+ \rightarrow e^+e^+e^-$$

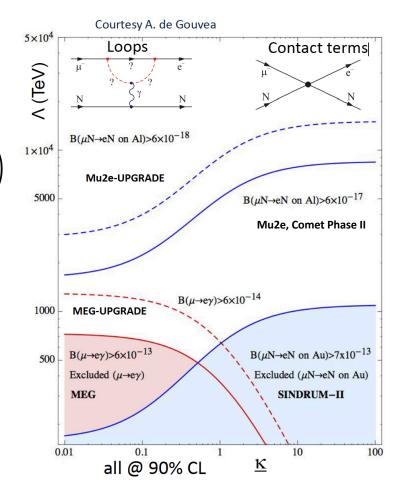



$$\mu^-N \rightarrow e^-N$$

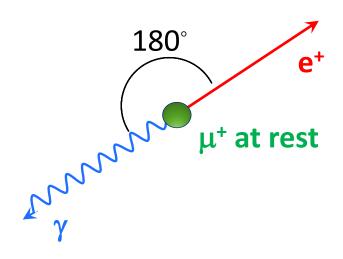








Model Independent Evaluation


 Add CLFV operators to SM Lagrangian

$$L_{CLFV} = \frac{m_{\mu}}{(1+\kappa)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\sum_{q=u,d} \bar{q}_L \gamma^{\mu} q_L \right)$$

- Λ is mass scale of new physics
- κ controls relative contribution of loops and contact terms
- CLFV provides a deep probe of New Physics parameter space
 - Sensitive to $\Lambda_{\rm eff} \sim 10^3 10^4 \, {\rm TeV/c^2}$

$$\mu^+
ightarrow e^+ \gamma$$

MEG at PSI is the state-of-the-art for CLFV in muons

$$B(\mu \to e^+ \gamma) < 4.2 \times 10^{-13} (90\% CL)$$

uses full data set (2009-2013) - 7.5 x 10¹⁴ stopped muons
 A. M. Baldini, et al. (MEG) Eur. Phys. J. C76, 8 (2016) 434.

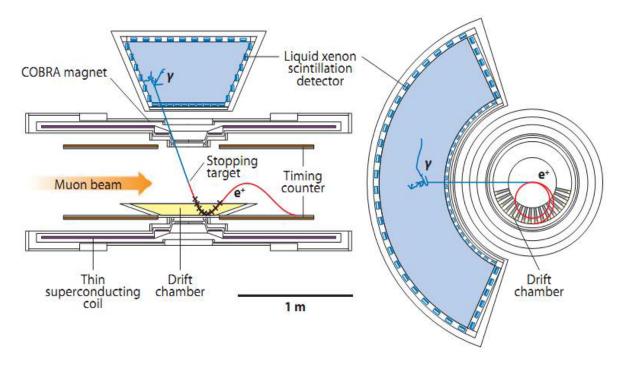
MEG II upgrade designing for a factor of 10 improvement over current state-of-the-art

$$\mu^+ \rightarrow e^+ \gamma$$

<u>Signal</u>

Electron and gamma are back-to-back $E_e = E_v = m_u/2$

Backgrounds


$$\mu^+ \rightarrow e^+ \nu \nu \gamma \ (Radiative\ Muon\ Decay)$$

Accidentals

$$B_{ACC} \propto \left(\frac{R_{\mu}}{D}\right) \left(\Delta t_{e\gamma}\right) \left(\frac{\Delta E_{e}}{m_{\mu}/2}\right) \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^{2} \left(\frac{\Delta \theta_{e\gamma}}{2}\right)^{2}$$

Keys to success: Excellent energy, timing and angular resolutions

MEG Detector

- Liquid Xe calorimeter
 - PMT readout
 - 11% of solid angle
- Drift Chamber (DC)
 - Radius: 19 28 cm
- Scintillator timing counters (TC)
- DC and TC inside graded solenoid field
- 205 μm polyethelene target

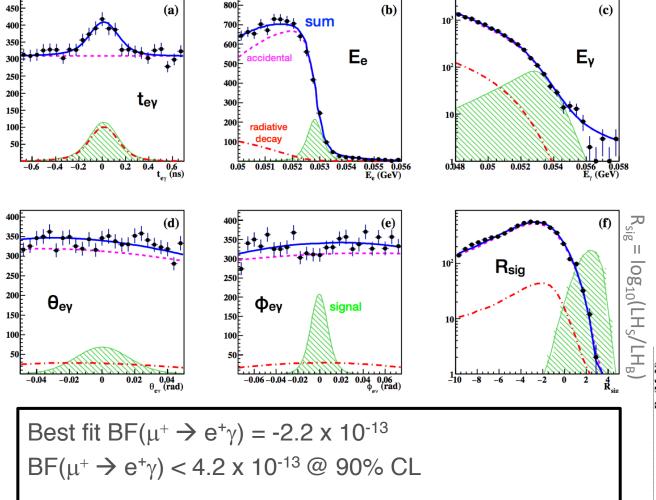
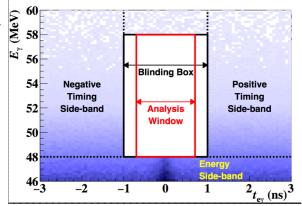

MEG Calibrations

Table 1 The calibration tools of the MEG experiment.

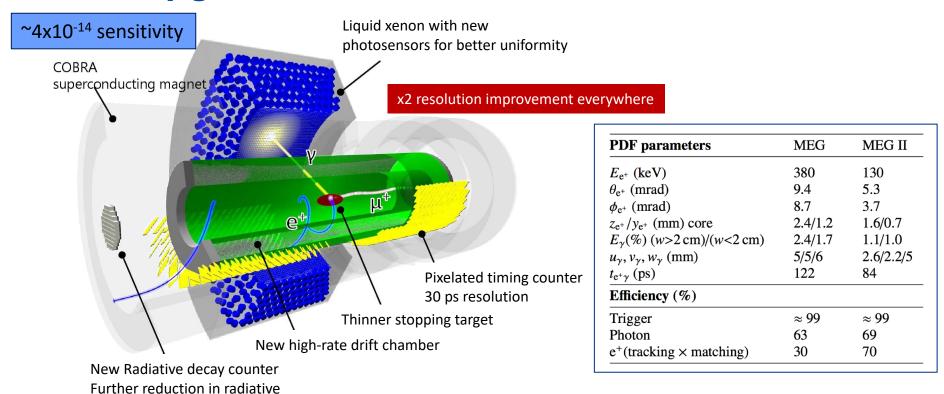
	Process	Energy	Main Purpose	Frequency
Cosmic rays	μ^{\pm} from atmospheric showers	Wide spectrum O(GeV)	LXe-DCH relative position	annually
			DCH alignment	
			TC energy and time offset calibration	
			LXe purity	on demand
Charge exchange	$\pi^- p \to \pi^0 n$ $\pi^0 \to \gamma \gamma$	55, 83, 129 MeV photons	LXe energy scale/resolution	annually
Radiative μ -decay	$\mu^+ o { m e}^+\gamma uar{ u}$	photons > 40 MeV,	LXe-TC relative timing	continuously
		positrons > 45 MeV	Normalisation	
Normal μ -decay	$\mu^+ o { m e}^+ u ar{ u}$	52.83 MeV end-point positrons	DCH energy scale/resolution	continuously
			DCH and target alignment	
			Normalisation	
Mott positrons	e^+ target $\rightarrow e^+$ target	≈ 50 MeV positrons	DCH energy scale/resolution	annually
			DCH alignment	
Proton accelerator	$^{7}\mathrm{Li}(\mathrm{p},\gamma)^{8}\mathrm{Be}$	14.8, 17.6 MeV photons	LXe uniformity/purity	weekly
	$^{11}\mathrm{B}(\mathrm{p},\gamma)^{12}\mathrm{C}$	4.4, 11.6, 16.1 MeV photons	TC interbar/ LXe-TC timing	weekly
Neutron generator	58 Ni $(n, \gamma)^{59}$ Ni	9 MeV photons	LXe energy scale	weekly
Radioactive source	$^{241}\mathrm{Am}(\alpha,\gamma)^{237}\mathrm{Np}$	5.5 MeV α 's, 56 keV photons	LXe PMT calibration/purity	weekly
Radioactive source	$^{9}{ m Be}(lpha_{^{241}{ m Am}},{ m n})^{12}{ m C}^{\star} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4.4 MeV photons	LXe energy scale	on demand
LED			LXe PMT calibration	continuously

Scale and resolutions determined with high degree of confidence

MEG Final Result

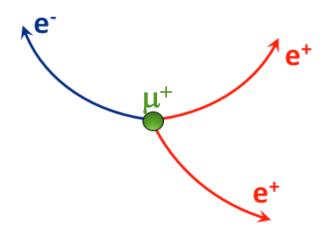

~7.5 x 10^{14} stopped μ^+ from full data set (2009-2013)

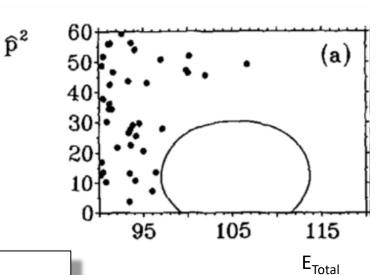
Eur. Phys. J. C76, 8 (2016) 434 [arXiv:1605.05081]


Utilizes 5 variables

- E_e , E_γ
- $t_{e\gamma} = t_e t_{\gamma}$
- $\theta_{e\gamma}$
- φ_{eγ}

Blind Analysis
Full Likelihood fit


MEG II Upgrade – Another Factor of 10



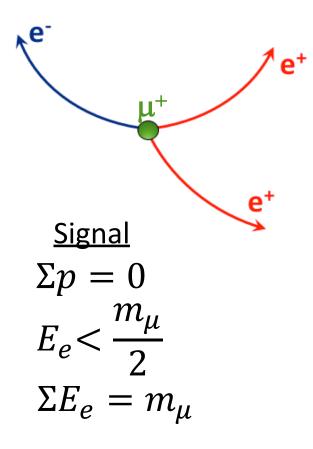
- Commissioning with beam has begun!
- Physics data taking will begin 2019 3 year run
- See talk by Cecilia Voena in Flavor Physics session for more details

background

$$\mu^+ \rightarrow e^+ e^+ e^-$$

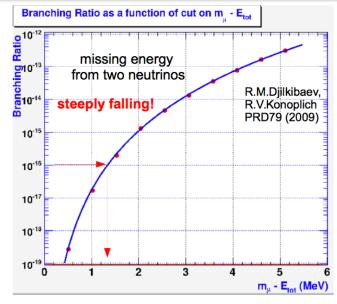
Current state-of-the-art

 $B(\mu^+ \to e^+ e^+ e^-) < 1 \times 10^{-12} (90\% CL)$


U. Bellgardt, et al. (SINDRUM) Nucl. Phys. B299 (1988) 1.

Next generation at PSI

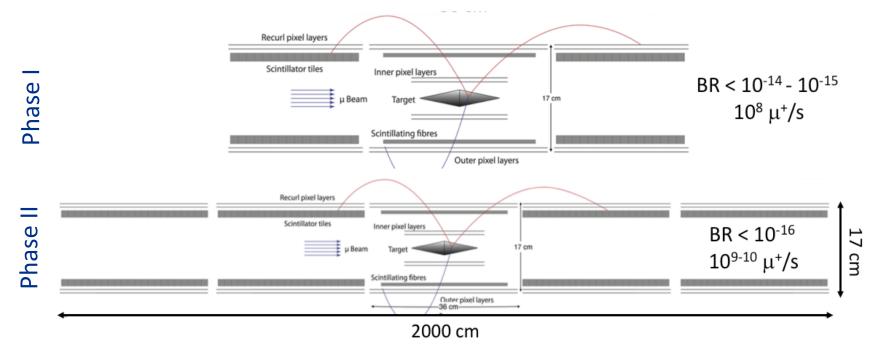
Mu3e Phase I x400 (early 2020s)

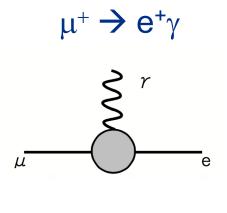

Phase II x10,000

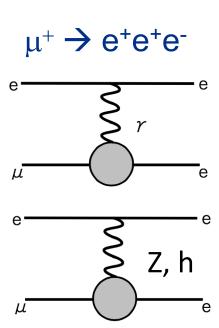
$$\mu^+
ightarrow e^+ e^+ e^-$$

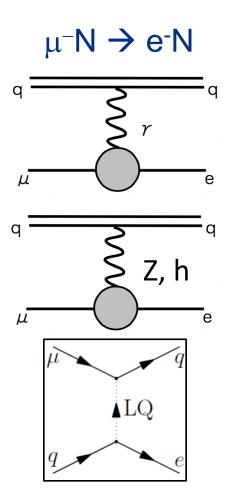
Backgrounds

Accidentals $\mu^{+} \rightarrow e^{+}\nu\nu\gamma \rightarrow e^{+}\nu\nu e^{+}e^{-}$ (Radiative Muon Decay)

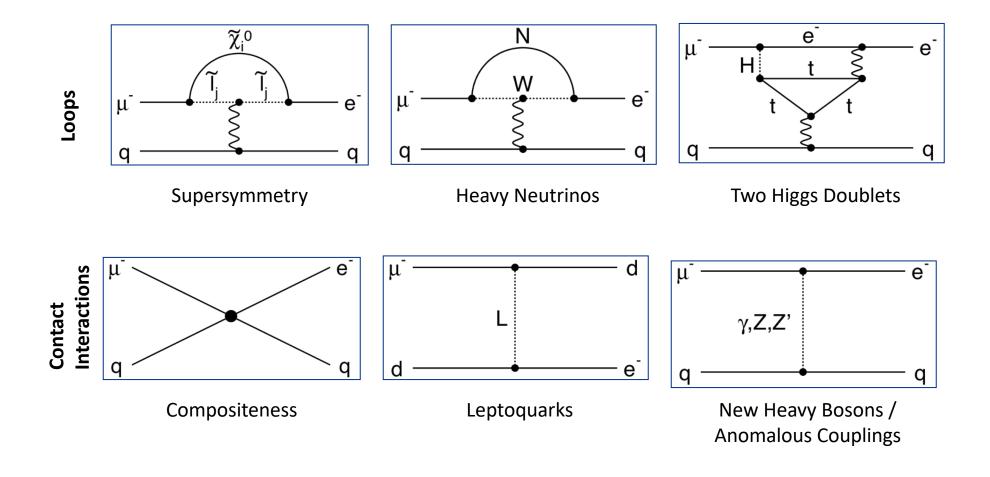

Keys to success: excellent momentum, timing, and vertex resolutions

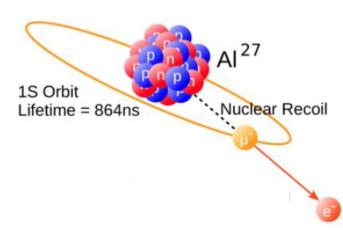

Mu3e Experiment


- Relies on development of fast, very thin pixel sensors
 - HV Maps technology
 - Prototyping underway
- Phased Experiment
 - Phase I PiE5 beamline shared with MEG Early 2020s
 - Phase II New High Intensity Muon Beamline



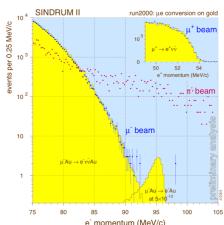
MuPix8 prototype





- Different channels offer complementary sensitivity.
- Their comparison is a powerful model discriminant.

A wide array of BSM physics allow for $\mu N \rightarrow e N$ conversion, either through loops or exchange of heavy intermediate particles

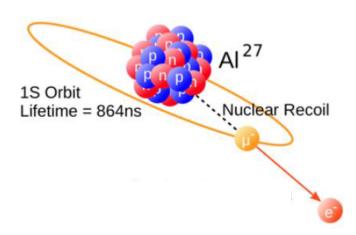


Current state-of-the-art

$$R_{\mu e} = \frac{\Gamma(\mu^{-}Au \to e^{-}Au)}{\Gamma(\mu^{-}Au \ Capture)} < 7 \times 10^{-13} (90\% \ CL)$$

W. Bertl, et al. (SINDRUM-II) Eur. Phys. J. C47 (2006) 337.

Next generation


DeeMee (J-PARC) x10 (currently operating at low power)

Mu2e (Fermilab) x10,000 (2021)

Comet (J-PARC) Phase-I x10 - 100 (2020)

Phase-II x10,000 (?)

<u>Signal</u>

Mono-energetic electron $E_{\mu e} = m_{\mu} - B(A,Z) - R(A,Z) \sim 105 \; MeV$

Coherent interaction with nucleus

Backgrounds

Decay in Orbit (DIO)

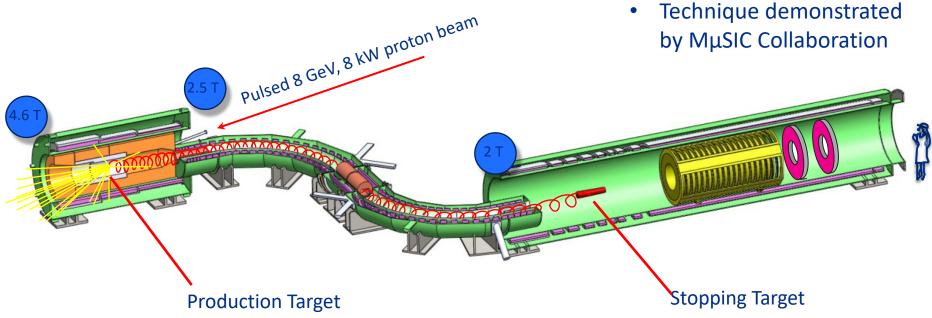
 $(\mu^- N \rightarrow e^- \nu \nu N)$

Radiative Pion Capture (RPC)

$$(\pi^- N \rightarrow \gamma N' \rightarrow e^+ e^- N')$$

Cosmic Rays

Keys to success: Large flux of stopped muons, excellent spectrometer resolution, pulsed proton beam, high efficiency cosmic veto

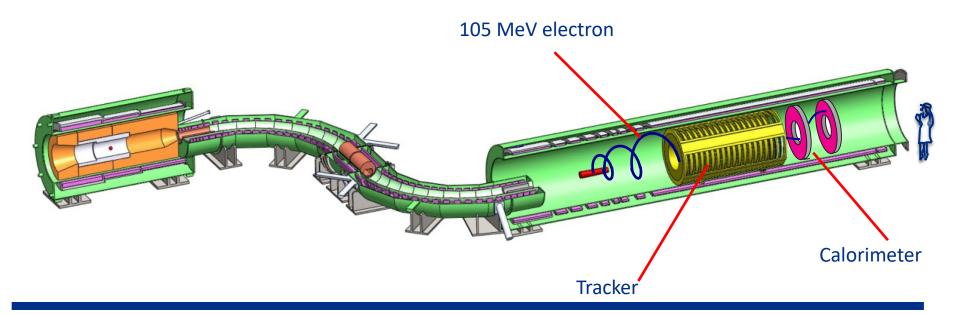

Mu2e Detector

Mu2e Project scope includes

- The Mu2e apparatus
 - **Superconducting Solenoids**
 - **Production Solenoid**
 - **Transport Solenoid**
 - **Detector Solenoid**

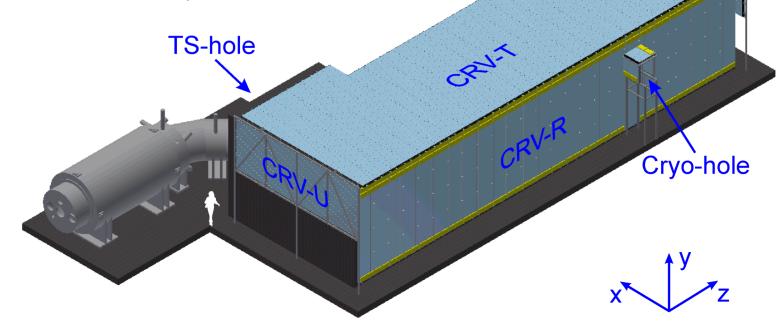
Production and Transport System

- Production target inside superconducting solenoid significantly enhances stopped muon yield
- Collimation system selects muon charge and momentum range
- 10¹⁰ Hz of stopped muons!
 - Technique demonstrated by MµSIC Collaboration


Mu2e Detector

Mu2e Project scope includes

- The Mu2e apparatus
 - Superconducting Solenoids
 - Tracker Straw drift tubes
 - Calorimeter Pure CsI crystals

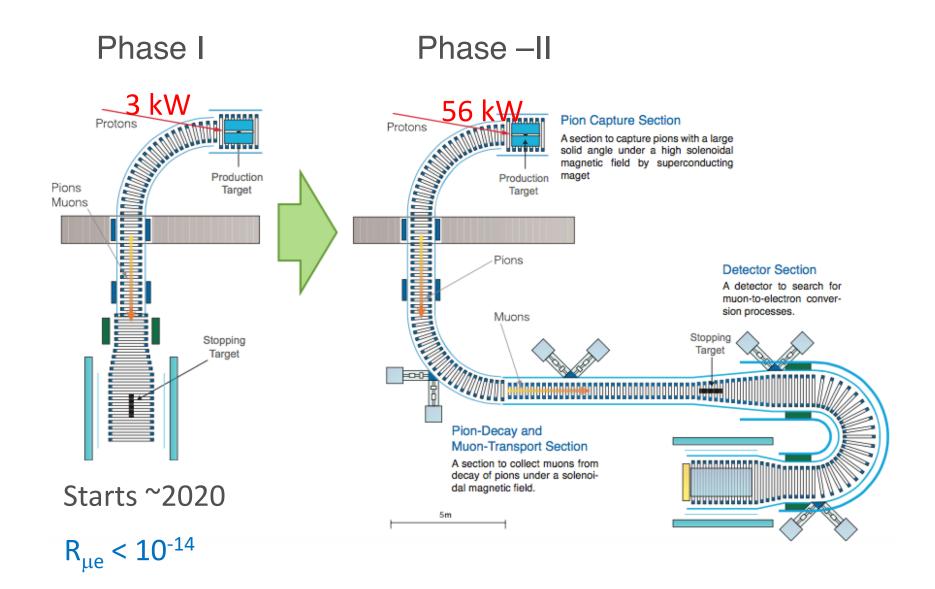


Mu2e Detector

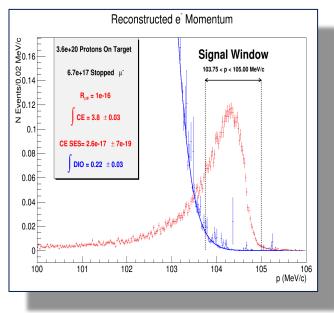
Mu2e Project scope includes

- The Mu2e apparatus
 - Superconducting Solenoids
 - Tracker Straw drift tubes
 - Calorimeter Pure CsI crystals
 - Cosmic Ray Veto Scintillator

Mu2e Construction Well Underway

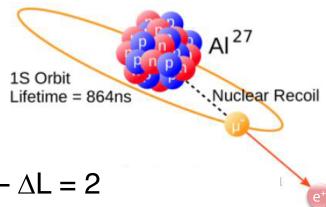


Commissioning begins in 2021


Comet Detector

Background Estimates

Mu2e Background estimates (COMET Phase-II very similar)


Category	Source	Events
Intrinsic	μ Decay in Orbit	0.14
	Radiative μ Capture	<0.01
	Radiative π Capture	0.02
Late Arriving Beam	Beam electrons	<0.01
	μ Decay in Flight	<0.01
	π Decay in Flight	<0.01
Miscellaneous	Anti-proton induced	0.04
	Cosmic Ray induced	0.21
Total Background		0.41

(assuming 6.7E17 stopped muons in 6E7 s of beam time)

Designed to be nearly background free

$$\mu^- \rightarrow e^+$$

Related to neutrinoless double beta decay $-\Delta L = 2$

- Process not coherent.
- Nucleus can be in ground or excited state, so e⁺ is not mono-energetic

Current state-of-the-art

$$R_{\mu e^{+}} = \frac{\Gamma(\mu^{-48}Ti \rightarrow e^{+48}Ca)}{\Gamma(\mu^{-48}Ti \rightarrow \nu_{\mu}^{48}Sc)} < 1.7 \times 10^{-12} (90\% \text{ CL})$$

J. Kaulard, et al. (SINDRUM-II) Phys. Lett. B422 (1998) 334.

- Accessible to Mu2e during normal running.
- Comet Phase II requires a special run.

CLFV in tau Decays

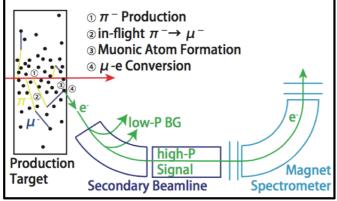
- Relative theoretical parameter reach of μ and τ decays is model-dependent. Comparisons distinguish between models.
- Taus more powerful event-by-event less GIM suppression
 - Can stop ~ $10^{10} \mu/s$.
 - BABAR and Belle τ samples over a decade totaled ~10¹⁰
- Significant effort from BABAR, Belle and LHCb, CMS, ATLAS
- Super flavor factories could significantly extend sensitivity
 - Polarized beams could provide additional advantages
 - Background reduction
 - CP violation in τ decays
 - g-2 of the τ
 - τ EDM
- Rich physics program with enough τ decays

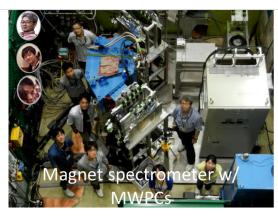
Summary

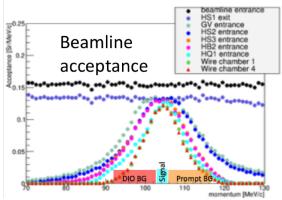
- The future is now for CLFV physics!
- Upcoming next generation muon experiments will make substantial leap in sensitivity
 - Broad, deep probes of new physics parameter space
 - $\Lambda_{NP} \sim O(10^3 10^4) \text{ TeV} >> \text{LHC}$
 - Compelling discovery sensitivity over a broad range of New Physics models (SUSY, GUT, Littlest Higgs, Multiple Higgs,...)
- Combining information from multiple processes is a powerful discriminator to understand underlying physics

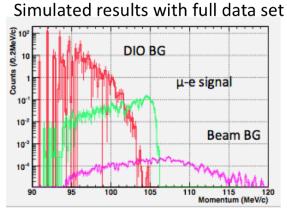
For More Information

Useful reviews

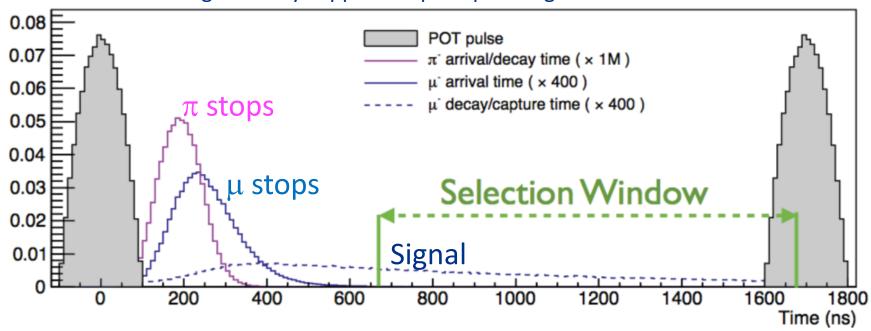

- L. Calibbi and G. Signorelli, Riv. Nuovo Cimento, 41 (2018) 71
- T. Gorringe & D. Hertzog, Prog.Part.Nucl. Phys. 84 (2015) 73.
- S. Mihara, J.P. Miller, P. Paradisi, G. Piredda, Annu.Rev.Nucl.Part.Sci. 63 (2013) 552.
- R.H. Bernstein & P.S. Cooper, Phys. Rept. 532 (2013) 27.
- Y. Kuno & Y. Okada, Rev. Mod. Phys. 73 (2001) 151.


About the experiments


- MEG: http://meg.icepp.s.u-tokyo.ac.jp (MEG-II TDR: arXiv:1801.04688)
- Mu2e: http://mu2e.fnal.gov (TDR: arXiv:1501.05241)
- COMET: http://comet.kek.jp/Introduction.html (Proposal: http://comet.kek.jp/Documents_files/Phase-I-Proposal-v1.2.pdf)
- DeeMee: http://deeme.hep.sci.osaka-u.ac.jp (Proposal: http://deeme.hep.sci.osaka-u.ac.jp/documents/deeme-proposal-r28.pdf/view)
- Mu3e: https://www.psi.ch/mu3e/documents)


Backup Slides

DeeMee - $\mu^- N o e^- N$



Signal Region: 102.0 -- 105.6 MeV/c

- New concept at JPARC
 - 3 GeV from RCS H-Line
- Use thick target as production, decay, and stopping volumes (graphite, SiC)
- Customize beam line to select momentum bite near E_{μe} ~ m_μ so that you're sensitive to μN→eN that occurs near the target surface
- Goal: $R_{\mu e}$ < 2 x 10^{-14} @ 90%CL
 - 2-3y of running at 1 MW
 - Currently operating at ~400 kW

Pulsed Beam for Muon Conversion Experiments

Pulsed beam significantly suppresses prompt backgrounds

Pions that survive to the stopping target are promptly captured on the nucleus

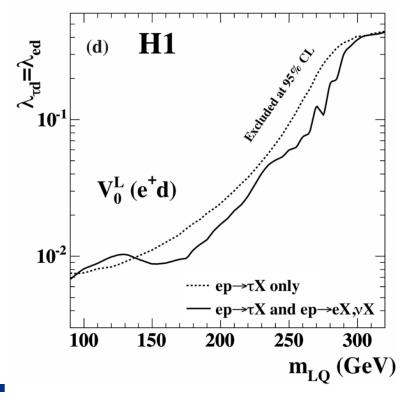
- Few % of the time, radiate γ with $E_{\gamma}^{\sim}m_{\mu}$
- Suppressed by 10⁹-10¹⁰ with pulsed proton beam and utilizing a delayed search window while maintaining a high efficiency for signal (~50%)

Muonium – Antimuonium Oscillations

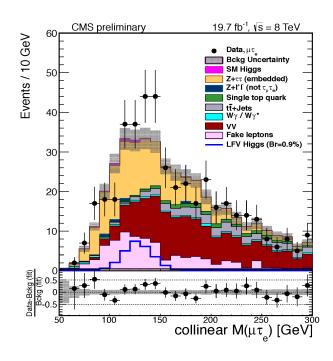
- Muonium Coulombic bound state of e⁻μ⁺
- Antimuonium Coulombic bound state of e⁺μ⁻
- Time dependent oscillation between distinct levels of particle species common quantum mechanical phenomenon
 - $-K^{0}\overline{K}^{0}, B^{0}\overline{B}^{0} \dots$
- Muonium Antimuonium Oscillation would be a clear signal of new physics. $\Delta L=2$ transition.
- Numerous models predict oscillations

Current state of the art

$$P_{M\bar{M}} < 8.3 \times 10^{-11}$$


L. Willmann et al., Phys. Rev. Lett. 82, 49 (1999)

Electron – Tau Conversion


 Electron to tau conversion in e⁻p deep inelastic scattering has been studies at HERA and could be extended at an electron – ion collider.

Predicted in Leptoquark models. Null searches used to set

limits on leptoquark parameters.

Direct Searches for CLFV Higgs decays

CMS -
$$B(h \to \tau \mu) < 1.51 \times 10^{-2}$$

ATLAS - $B(h \to \tau \mu) < 1.43 \times 10^{-2}$

Rare Higgs decays are extremely sensitive to new physics if additional Higgs couplings exist.

- Large physics program at LHC to search for CLFV
 - Direct searches
 - Higgs LFV searches
 - Z decays
 - tau decays
- No signals observed, but much more data to come!