S-matrix Bootstrap revisited

João Penedones

S-matrix Bootstrap I: QFT in AdS [arXiv:1607.06109]

S-matrix Bootstrap II: two-dimensional amplitudes [arXiv:1607.06110]

S-matrix Bootstrap III: higher dimensional amplitudes [arXiv:1708.06765]

S-matrix Bootstrap IV: multiple amplitudes [work in progress]

with A. Homrich, M. Paulos, J. Toledo, B. Van Rees, P. Vieira

Motivation

Bootstrap Philosophy: bound the space of theories by imposing consistency conditions on physical observables.

Goal: extend recent success in CFT to massive QFT.

[Rattazzi, Rychkov, Tonni, Vichi '08] + many others

$$\sum = \sum$$

Revisit the S-matrix Bootstrap program of the 60's and 70's.

Question

What is the maximal coupling compatible with the fundamental properties of QFT?

$$\max g_b^2 = ?$$

Outline

- S-matrix Bootstrap in D=2
- S-matrix Bootstrap in D>2
- Multiple Amplitudes Bootstrap in D=2
- Open questions

S-matrix Bootstrap in 2D QFT

$$k_i^2 = m^2$$

 $s \equiv (k_1 + k_2)^2$
 $t \equiv (k_2 - k_3)^2 = 4m^2 - s$
 $u \equiv (k_3 - k_1)^2 = 0$

$$k_i^2 = m^2$$

 $s \equiv (k_1 + k_2)^2$
 $t \equiv (k_2 - k_3)^2 = 4m^2 - s$
 $u \equiv (k_3 - k_1)^2 = 0$

Crossing symmetry: $S(s) = S(4m^2 - s)$

$$k_i^2 = m^2$$

 $s \equiv (k_1 + k_2)^2$
 $t \equiv (k_2 - k_3)^2 = 4m^2 - s$
 $u \equiv (k_3 - k_1)^2 = 0$

Crossing symmetry: $S(s) = S(4m^2 - s)$

Analyticity follows from mass spectrum.

 $\frac{1}{m_b}$ $\frac{1}{m_b}$

$$k_i^2 = m^2$$

 $s \equiv (k_1 + k_2)^2$
 $t \equiv (k_2 - k_3)^2 = 4m^2 - s$
 $u \equiv (k_3 - k_1)^2 = 0$

Crossing symmetry: $S(s) = S(4m^2 - s)$ Analyticity follows from mass spectrum.

 2m m_b m

Crossing:
$$S(s) = S(4m^2 - s)$$

Analyticity: $S(s^*) = [S(s)]^*$

Crossing:
$$S(s) = S(4m^2 - s)$$
 cubic coupling
$$S(s) = [S(s)]^*$$

$$S(s) \sim \frac{g_b^2}{s - m_b^2}$$

$$S(s) \sim \frac{g_b^2}{s - m_b^2}$$

Crossing:
$$S(s) = S(4m^2 - s)$$
 cubic coupling
$$S(s) = [S(s)]^*$$

$$S(s) \sim \frac{g_b^2}{s - m_b^2}$$

Unitarity:
$$|S(s)|^2 \le 1$$
, $s > 4m^2$.

$$S(s) = S(4m^2 - s)$$

cubic coupling

Analyticity:
$$S(s^*) = [S(s)]^*$$

 $S(s) \sim \frac{g_b^2}{s - m_i^2}$

$$4m^2$$

Unitarity:

$$|S(s)|^2 \le 1$$
, $s > 4m^2$.

$$s > 4m^2$$

Question: for given spectrum,

$$\max g_b^2 = ?$$

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad \text{[Creutz '72]}$$

$$CDD \text{ factor}$$

$$[Castillejo, Dalitz, Dyson]$$

Pole at
$$s=m_b^2>2$$

No particle production
$$|S_{opt}(s)|^2 = 1$$
, $s > 4m^2$.

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad \text{[Creutz '72]}$$

$$CDD \text{ factor}$$

$$[Castillejo, Dalitz, Dyson]$$

Pole at
$$s=m_b^2>2$$

No particle production $|S_{opt}(s)|^2 = 1$, $s > 4m^2$.

$$h(s) \equiv \frac{S(s)}{[m_b](s)}$$

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad \text{[Creutz '72]}$$

$$CDD \text{ factor}$$

$$[Castillejo, Dalitz, Dyson]$$

Pole at
$$s=m_b^2>2$$

No particle production $|S_{opt}(s)|^2 = 1$, $s > 4m^2$.

$$h(s) \equiv \frac{S(s)}{[m_b](s)} \Rightarrow \frac{h(s)}{|h(s)| \le 1}$$
 bounded at all boundaries

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}} \equiv [m_b](s) \quad \text{[Creutz '72]}$$

$$CDD \text{ factor}$$

$$CDD \text{ factor}$$

$$Castillejo, Dalitz, Dyson]$$

Pole at $s=m_b^2>2$

No particle production $|S_{opt}(s)|^2 = 1$, $s > 4m^2$.

$$h(s) \equiv \frac{S(s)}{[m_b](s)} \implies \frac{h(s)}{|h(s)| \le 1}$$
 bounded at all boundaries

$$|h(m_b^2)| = \left| \frac{g_b^2}{\text{Res}_{s=m_b^2}[m_b](s)} \right| \le 1$$

Maximum cubic coupling

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}}$$

Maximum cubic coupling

$$S_{opt}(s) = \frac{\sqrt{s(4m^2 - s)} + \sqrt{m_b^2(4m^2 - m_b^2)}}{\sqrt{s(4m^2 - s)} - \sqrt{m_b^2(4m^2 - m_b^2)}}$$

$$S_{ext}(s,t) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \sum_{a,b=0}^{a} c_{(ab)} \rho_s^a \rho_t^b$$

$$S_{ext}(s,t) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \sum_{a,b=0}^{b} c_{(ab)} \rho_s^a \rho_t^b$$

Crossing symmetry and analyticity are automatic. Unitarity gives quadratic constraints:

$$|S_{ext}(s, 4m^2 - s)|^2 \le 1, \qquad s > 4m^2$$

Ansatz:

$$S_{ext}(s,t) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \sum_{a,b=0}^{a} c_{(ab)} \rho_s^a \rho_t^b$$

Crossing symmetry and analyticity are automatic.

Unitarity gives quadratic constraints:

$$|S_{ext}(s, 4m^2 - s)|^2 \le 1, \qquad s > 4m^2$$

Truncate to finite number of variables and quadratic constraints

$$a+b \leq N_{\max}$$

$$\{g_b^2, c_{(ab)}\}$$
at $s = s_1, s_2, \dots, s_M$

Ansatz:

$$S_{ext}(s,t) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \sum_{a,b=0}^{a} c_{(ab)} \rho_s^a \rho_t^b$$

Crossing symmetry and analyticity are automatic.

Unitarity gives quadratic constraints:

$$|S_{ext}(s, 4m^2 - s)|^2 \le 1, \qquad s > 4m^2$$

Truncate to finite number of variables and quadratic constraints

$$a+b \leq N_{\max}$$

$$\{g_b^2, c_{(ab)}\}$$
at $s = s_1, s_2, \dots, s_M$

[Simmons-Duffin '15]

Use semidefinite programming (SDPB) to maximize g_b^2 subject to these constraints. This reproduces the analytic solution as $N_{\rm max} \to \infty$

S-matrix Bootstrap in d+1 QFT

$$\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = 1 + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$$

$$\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = 1 + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$$

Crossing symmetry & Analyticity:

$$T(s,t,u) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \frac{g_b^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

$$\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = 1 + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$$

Crossing symmetry & Analyticity:

$$T(s,t,u) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \frac{g_b^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

Partial waves: Gegenbauer polynomial
$$x = \cos \theta$$

$$S_{\ell}(s) = 1 + i \frac{(s - 4m^2)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^{1} dx (1 - x^2)^{\frac{d-3}{2}} P_{\ell}^{(d)}(x) \left. T(s, t, u) \right|_{\substack{t \to -\frac{1-x}{2}(s - 4m^2) \\ u \to -\frac{1+x}{2}(s - 4m^2)}}$$

Unitarity:
$$|S_{\ell}(s)|^2 \le 1$$
, $s > 4m^2$, $\ell = 0, 2, 4, ...$

$$\langle \mathbf{p}_3, \mathbf{p}_4 | S | \mathbf{p}_1, \mathbf{p}_2 \rangle = 1 + i(2\pi)^{d+1} \delta^{(d+1)}(p_1 + p_2 - p_3 - p_4) T(s, t, u)$$

Crossing symmetry & Analyticity:

$$T(s,t,u) = \frac{g_b^2}{s - m_b^2} + \frac{g_b^2}{t - m_b^2} + \frac{g_b^2}{u - m_b^2} + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

Partial waves: Gegenbauer polynomial
$$x = \cos \theta$$

$$S_{\ell}(s) = 1 + i \frac{(s - 4m^2)^{\frac{d-2}{2}}}{\sqrt{s}} \int_{-1}^{1} dx (1 - x^2)^{\frac{d-3}{2}} P_{\ell}^{(d)}(x) \left. T(s, t, u) \right|_{\substack{t \to -\frac{1-x}{2}(s - 4m^2) \\ u \to -\frac{1+x}{2}(s - 4m^2)}}$$

Unitarity:
$$|S_{\ell}(s)|^2 \le 1$$
, $s > 4m^2$, $\ell = 0, 2, 4, \dots \ell_{\text{max}}$

 \Rightarrow Quadratic constraints on the variables $\{g_b^2, \alpha_{(abc)}\}$ $a+b+c \le N_{\text{max}}$

Maximal cubic coupling in 3+1 QFT

Ansatz with no poles. Maximize
$$\lambda=\frac{1}{32\pi}T(s=t=u=\frac{4}{3}m^2)$$
 (e.g. $\pi^0\pi^0\to\pi^0\pi^0$)

Ansatz with no poles. Maximize $\lambda = \frac{1}{32\pi}T(s=t=u=\frac{4}{3}m^2)$ (e.g. $\pi^0\pi^0\to\pi^0\pi^0$)

Improved ansatz with threshold bound state:

$$T(s,t,u) = \beta \left(\frac{1}{\rho_s - 1} + \frac{1}{\rho_t - 1} + \frac{1}{\rho_u - 1} \right) + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

$$a + b + c \le N_{\text{max}}$$

Improved ansatz with threshold bound state:

$$T(s,t,u) = \beta \left(\frac{1}{\rho_s - 1} + \frac{1}{\rho_t - 1} + \frac{1}{\rho_u - 1} \right) + \sum_{a,b,c=0} \alpha_{(abc)} \rho_s^a \rho_t^b \rho_u^c$$

$$a + b + c \le N_{\text{max}}$$

Ansatz with no poles. Maximize $\lambda = \frac{1}{32\pi}T(s=t=u=\frac{4}{3}m^2)$ (e.g. $\pi^0\pi^0\to\pi^0\pi^0$)

No particle production?

Multiple Amplitudes Bootstrap in 2D QFT

Example: two stable particles

Example: two stable particles

Unitarity:
$$|S_{11\to 11}|^2 + |S_{11\to 22}|^2 \le 1$$

Not zero in optimal solution

Unitarity

$$T = \begin{bmatrix} T_{11\to 11} & T_{11\to 22} \\ T_{22\to 11} & T_{22\to 22} \end{bmatrix} \qquad \rho = \begin{bmatrix} \frac{\theta(s-4m_1^2)}{2\sqrt{s(s-4m_1^2)}} & 0 \\ 0 & \frac{\theta(s-4m_2^2)}{2\sqrt{s(s-4m_2^2)}} \end{bmatrix}$$

Unitarity is a matrix equation:

$$2\operatorname{Im} T = T^{\dagger}\rho T + positive$$

This can be imposed in SDPB as a positive semi-definite matrix:

$$\begin{bmatrix} \mathbb{I} & \mathbf{T}^{\dagger} \sqrt{\rho} \\ \sqrt{\rho} \, \mathbf{T} & 2\mathrm{Im} \, \mathbf{T} \end{bmatrix} \succeq 0$$

Preliminary results

3-state Potts model saturates the bound for $m_2=m_1$ and $\frac{g_{222}}{g_{112}}=$

Open questions

Outlook

- Anomalous thresholds (Landau diagrams)
- Particles with spin (internal and external)
- Particles with flavour (global symmetries)
 [He, Irrgang, Kruczenski '18]
 [Cordova, Vieira '18]
 [Paulos, Zheng '18]

[in progress with Guerrieri, JP, Vieira]

- Massless particles?
- Connect with conformal bootstrap for D>2
- Other interesting questions? Maximize particle production? Resonances? [Doroud, Elias Miró '18]
- Can we input UV data about the QFT? Hard scattering?
 Form factors?

Thank you!