

Higgs Binoculars for Dark Matter Searches

SUSY 2018, Barcelona | July 26, 2018

Monika Blanke, Simon Kast, Jennifer Thompson, Susanne Westhoff, Jose Zurita

HEIKA - HEIDELBERG KARLSRUHE RESEARCH PARTNERSHIP

The Hunt for the Dark Matter Particles

Phenomenology

Introduction

Higgs binoculars for DM searches – 000000 Monika Blanke, Simon Kast, Jennifer Thompson, Susanne Westhoff, Jose Zurita Conclusion

July 26, 2018

At LHC: Mono-X versus Di-X Signature

Introduction

Phenomenology

Conclusion

Higgs binoculars for DM searches – G0000000 Monika Blanke, Simon Kast, Jennifer Thompson, Susanne Westhoff, Jose Zurita

July 26, 2018

A Novel Signature: Di-Higgs + Missing Energy

Dedicated searches so far:

- Di-jet + MET
- Top-quark pairs + MET
- Di-lepton + MET

. . . \Rightarrow What about the Higgs?

Our goals:

- Di-Higgs + MET for gravitino DM studied by CMS/ATLAS [CMS-SUS-16-044 (1709.043896)] [ATLAS (1806.04030)]
- **Z**' model with $b\bar{b}\gamma\gamma$ in final state [Chen, Lin, Wu, Yue '18]

- Explore viable models and their phenomenology
- Establish simplified models for LHC searches
- Discover dark matter at LHC

Dirac Doublet-Singlet Model

Simplified model which produces the desired signature

e.g. [Mahbubani, Senatore '05], [Freitas, Westhoff, Zupan '15]

$$\mathcal{L}_m \supset -m_D \bar{\chi}_D \chi_D - m_S \bar{\chi}_S \chi_S - (y \bar{\chi}_D \chi_S H + h.c.)$$

EWSB \rightarrow physical particles χ_h and χ_l (DM candidate)

 $\chi_h = \cos\theta \,\,\chi_S + \sin\theta \,\,\chi_D, \qquad \qquad \chi_I = -\sin\theta \,\,\chi_S + \cos\theta \,\,\chi_D$

with masses

$$m_{h,l}=\frac{1}{2}\left(m_{D}+m_{S}\pm\Delta m\right)$$

with

$$\sin^2\theta = \frac{1}{2}\left(1 + \frac{m_D - m_S}{\Delta m}\right), \qquad (\Delta m)^2 = (m_D - m_S)^2 + 2(yv)^2$$

Phenomenology

Introduction

Higgs binoculars for DM searches – 0000000 Monika Blanke, Simon Kast, Jennifer Thompson, Susanne Westhoff, Jose Zurita Conclusion

Relevant Interactions of χ_h and χ_l

Coupling to the Higgs:

$$\mathcal{L} \supset -\frac{y}{\sqrt{2}} \Big[\sin(2\theta) \left(\bar{\chi}_h \chi_h - \bar{\chi}_l \chi_l \right) + \cos(2\theta) \left(\bar{\chi}_h \chi_l + \bar{\chi}_l \chi_h \right) \Big] h$$

Coupling to the Z:

Introduction

$$\mathcal{L} \supset -\frac{g}{2c_{W}} \Big[\cos^{2}\theta \, \bar{\chi}_{l} \gamma^{\mu} \chi_{l} + \sin^{2}\theta \, \bar{\chi}_{h} \gamma^{\mu} \chi_{h} \\ + \frac{1}{2} \sin(2\theta) \left(\bar{\chi}_{h} \gamma^{\mu} \chi_{l} + \bar{\chi}_{l} \gamma^{\mu} \chi_{h} \right) \Big] Z_{\mu}$$

Interactions relevant for production of mediator, decay to DM and direct detection cross section.

Phenomenology

Higgs binoculars for DM searches – 000000 Monika Blanke, Simon Kast, Jennifer Thompson, Susanne Westhoff, Jose Zurita Conclusion

Avoiding Direct Detection Bounds

DM state $\chi_{\rm I}$ has contribution from neutral component of doublet $\chi_{\rm D}$ through mixing

 \rightarrow inherits coupling both to Higgs and Z (dangerous!)

Coupling is proportional to mixing angle $\theta \rightarrow$ need to suppress y

 \Rightarrow Benchmark choice for further analysis: $y = 10^{-3}$

Phenomenology

Conclusion

Signatures at the LHC

- χ_l only appearing as Missing Energy
- Higgs primarily decays to $bar{b}
 ightarrow$ choose as signal benchmark

 \Rightarrow Signal at parton level: 4 b-quarks plus MET

Phenomenology

Relevant Backgrounds

Several SM processes can produce identical/similar signature (with Neutrinos resulting in Missing Energy):

Introduction

Gaining Discrimination Power

Huge number of background events expected

Reducing the background vs. the signal by applying the following selection criteria:

• Lepton rejection (no isolated electrons/muons with $p_{\perp} > 7 \,\text{GeV}$ within $-2.4 \le \eta \le 2.4$)

Phenomenology

- Minimum Missing Transverse Energy (MET)
- B-Tagging

Introduction

Jet-substructure Analysis

 \Rightarrow Optimizing significance and potential for discovery at LHC

Missing Transverse Energy Trigger

 $\chi \Rightarrow$ Favours a scenario with sizeable mass-splitting between χ_h and χ_L

Introduction	Phenomenology		Conclusio
Higgs binoculars for DM searches -	000000		
Monika Blanke, Simon Kast, Jennifer Thompson, S	Susanne Westhoff, Jose Zurita	July 26, 2018	11/15

Substructure Analysis

Cluster $b\bar{b}$ in fatjet, use BDRS jet-substructure analysis to identify Higgs [Butterworth, Davison, Rubin, Salam '08]

 \Rightarrow Use our own implementation of BDRS, including detector simulation with Delphes (R = 1.2)

Phenomenology

Introduction

Higgs binoculars for DM searches – 000000 Monika Blanke, Simon Kast, Jennifer Thompson, Susanne Westhoff, Jose Zurita Conclusion

July 26, 2018

B-Tagging of the Subjets

- We have two Higgs \rightarrow two fatjets with two *b*-quarks in each
- Discrimination power vs. signal event reduction

Optimizing the Discrimination Procedure

 \Rightarrow To do: perform a multivariate analysis

Introduction	Phenomenology		Conclu
Higgs binoculars for DM searches –	000000		
Monika Blanke, Simon Kast, Jennifer Thompson, Susanne We	esthoff, Jose Zurita	July 26, 2018	14/15

Conclusion and Outlook

- Di-Higgs plus Missing Energy is an interesting new signature
- Discovery potential at High Luminosity LHC
- Substructure analysis as powerful tool for Higgs identification
 - ightarrow essential for background discrimination
- Next: Multivariate analysis as final step
- Study other event topologies in different simplified models

Phenomenology

Introduction

Conclusion

July 26, 2018