Searches for SUSY via strong production in fully hadronic final states at CMS

Why fully hadronic?

Four fully hadronic searches at CMS at 13 TeV

\mathbf{H}_{T}^{miss}	<u>SUS-16-033</u> arxiv1704.07781	35.9 fb ⁻¹	
M _{T2}	<u>SUS-16-036</u> arxiv1705.04650	35.9 fb ⁻¹	Focus on these results in this talk
α _τ	<u>SUS-16-038</u> arxiv1802.02110	35.9 fb ⁻¹	in this taik
Razor	SUS-15-004 arxiv1609.07658	2.3 fb ⁻¹	

Strategy for fully hadronic inclusive searches

- Large ME_T from neutralinos
- Many jets
- Large energy deposits
- Sensitivity to very different signals through binning in jet & b-jet multiplicity
- Binning in H_T for energy scale sensitivity
- Lepton veto

$$\mathbf{H}_T = \sum_{jets} |\vec{p_T}|$$

Main backgrounds

QCD multi-jet:

- Mis-measurement of a jet leads to imbalanced event
 → instrumental ME_T
- W-jets & ttbar (Lost lepton):
 - ME_T from neutrino from leptonic W decay
 - Charged lepton not caught by lepton veto because of acceptance, reconstruction or isolation
- Z_{vv}+jets:
 - ME_{T} from the two neutrinos

QCD multijet suppression & Discovery variables

Angle between mismeasured jet and ME_{τ} (H_{τ}^{miss}) is small

 \rightarrow suppress QCD multijet events

Discovery variables are **ME_T like** (Tail searches!):

$$\alpha_T = E_T^{j2} / M_T$$

$$\mathbf{H}_{T}^{miss} = |-\sum_{jets} \vec{p_{T}}|$$

 $M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} [\max(M_T^{(1)}, M_T^{(2)})]$

QCD Estimate: Rebalance and Smear

Lost Lepton estimate

- Charged lepton not seen because of
 - Acceptance of detector
 - Reconstruction/ID
 - Non-isolation
- Suppress with efficient lepton veto

$\boldsymbol{Z} \rightarrow \boldsymbol{\nu}\boldsymbol{\nu} \ \boldsymbol{Estimate}$

γ**+jets**

 $Z \rightarrow II$

- High stats control region
- Large systematic uncertainties due to fragmentation photons & theoretical uncertainty on Z/γ ratio

Remove γ to emulate

Remove **ll** to emulate

 $Z \rightarrow VV$

 $Z \rightarrow \nu \nu$

- Lower stats, now possible with 40 fb⁻¹
- Lower uncertainties (same process)
- Account for Top contamination in same flavor with eµ data control region

Selected results: good agreement with SM

Aggregate signal regions & covariance matrix for easier reinterpretation

Exclusion Limits – Gluino production

- Similar reach for the analyses
- Hadronic analyses have similar reach as leptonic channels
- Extended reach up to about 2 TeV along gluino mass

Exclusion Limits – Direct squark production

- Similar reach for H_T^{miss} and M_{T_2} analyses
- Have similar reach as leptonic channels for stop production
- Extended reach by about 1TeV along squark mass

14

Exclusion Limits – Split SUSY

- Split SUSY: all but the fermionic superpartners are assumed to be heavy
 - \rightarrow highly virtual squark states
 - \rightarrow suppressed gluino decay
 - \rightarrow displaced vertices
 - \rightarrow significant ME_T

SUS-16-38

- For τ₀ > 1ps: gluino hadronizes into bound colorless singlet state (R-hadron) until it decays to a quark-antiquark pair and a neutralino
- Models probed from 1µm to 100m and metastable gluinos with $c\tau_0 = 10^{18}$ mm which are leaving CMS without being detected

Conclusions

- Showed results of 3 fully hadronic inclusive searches for SUSY with 35.9 fb⁻¹ collected by the CMS detector
- Probed the direct squark and gluino production at the energy frontier
- Probed split SUSY models with decay lengths in the range of $10^{-3} < c\tau_0 < 10^5$ mm
- No significant excess over background predictions:

 → Exclude masses up to about 2 TeV for gluinos and 1 TeV for squarks with three independent approaches

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherw The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediat sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

BACK UP

The CMS detector

Special estimate of hadronic Tau decays for H_{τ}^{miss} analysis

- Single µ control region in data
- Smear μp_{τ} with τ_{h} response function
- Recompute event kinematics

The M_{T2} Variable

 M_{T2} is a generalized ME_T like variable for decays with 2 unobserved particles

$$M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} [\max(M_T^{(1)}, M_T^{(2)})]$$

 Split visible part of event into 2 hemispheres (pseudojets) for calculation of M_{T2}

Approximative formula:
$$(M_{T_2})^2 \sim p_T(J1) \cdot p_T(J2) \cdot (1+\cos\varphi_{12})$$

J1

QCD background estimate via delta Phi

• Invert $\Delta \phi(ME_{T}, jets)$ cut

 $r_{\phi} = \frac{N(\Delta\phi_{min}(jets, E_T^{miss}) > 0.3)}{N(\Delta\phi_{min}(jets, E_T^{miss}) < 0.3)}$

- Fit r_{ϕ} at low M_{T_2} & extrapolate to signal region inclusively in each H_{T} region
 - \rightarrow Then split among $N_{j}/N_{\rm b}$ with data based transfer factors
- N_{CR} coming from signal triggers

$$N_{QCD}^{SR} = N^{CR}(H_T, M_T) \cdot r_{\phi}(M_T) \cdot f_j(H_T) \cdot r_b(N_j)$$

Aggregate signal regions

(MTZ'A ID -

Signal	Expected limit [fb]	Expected limit [fb] (best
	(run anarysis)	aggregated region)
$pp \rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$ $(m_{\tilde{g}} = 1700 \text{ GeV}, m_{\tilde{\chi}_1^0} = 0 \text{ GeV})$	1.80	3.84
$pp \rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$ $(m_{\tilde{g}} = 1000 \text{ GeV}, m_{\tilde{\chi}_1^0} = 950 \text{ GeV})$	234	498

Full analysis give significantly better limits than the best aggregate region